Astronomy 45

Introduction to Astrophysics

Problem Set 7 - Due Friday November 15.

1. What is the height of the tides on the Moon induced by the Earth? The lunar radius is 1738 km .
2. a) Two small bodies, each of mass m, lie on a line with a large body of mass $M_{x^{*}} . M$ lies at a distance R from one of the small bodies and a distance $R+d$ from the second. What is d if the gravitational attraction of the small bodies just equals the differential gravitational force caused by their attraction to M ? You may assume that $R \gg \mathrm{~d}$.
b) A small body of mass m and radius r is falling radially towards M. Treat the small body as consisting of two equal particles separated by a distance d. Within what distance between m and M will the smaller mass be torn apart?
3. A particle starts from rest at an infinite distance from a star of mass M and radius R. The kinetic energy of the particle will be converted to heat and light when it impacts the surface. If the star is a white dwarf with $M=1 M_{\odot}$ and $R=7 \times 10^{8} \mathrm{~cm}$, what is the energy released by 1 g of infalling matter? What fraction is it of the rest mass $\left(m c^{2}\right)$? If the star were a neutron star with $M=1.4$ M_{\odot} and $R=10 \mathrm{~km}$, what would be the energy released? There are sources which emit X-rays with a luminosity of $10^{37} \mathrm{ergs} \mathrm{s}^{-1}$. If this is produced by material pulled from a companion star onto the surface of a neutron star, how much mass must be transferred per second, measured in solar masses? (For $m=1 \mathrm{~g}, m c^{2}=9 \times 10^{20}$ ergs.)
