Astronomy 45 Introduction to Astrophysics

Final Examination Spring 1998 2:15 Friday May 15 Sever 214

Part A consists of questions requiring short answers and counts for 40% of the total score. Part B consists of proofs and problems and counts for 60%. You can use calculators. The following data may be useful:

1 AU = 1.496 × 10⁸ km
G = 6.67 × 10⁻⁸ cm³ s⁻² g⁻¹

$$\sigma$$
 = 5.67 × 10⁻⁵ ergs cm⁻²s⁻¹ K⁻⁴
 L_{\odot} = 3.90 × 10³³ ergs s⁻¹
 R_{\odot} = 6.96 × 10⁵ km
1 W= 10⁷ ergs s⁻¹
 $B_{v}(T) = \frac{2hv^{2}}{c^{3}} \frac{1}{e^{hv/kT} - 1}$

Part A.

Short Answers

- 1. a) Write down the relationship between the synodic and sidereal periods of an object that is in orbit around the Sun.
 - b) Write down Kepler's Third Law.

c) An object is observed from the Earth to have a synodic period of 2 years. What is the ratio of the two possible values of the semi-major axis of the object's orbit?

2. The energy of a particle moving in an elliptical orbit determines the semimajor axis. What property of the orbit is determined by the angular momentum?

- 3. Briefly describe what observations you would make to determine stellar distances in terms of km.
- 4. What is the relationship between apparent stellar magnitudes and absolute stellar magnitudes?
- 5. In the classification scheme U, B, V, which has the longest wavelengths and which has the greatest energy per photon?
- 6. What parameters are related in the Hertzsprung-Russell diagram? What is meant by a "main sequence star"?
- 7. What are the Roche lobes in a binary system?
- 8. What determines the Roche limit for a satellite of a planet?
- 9. Explain why the moon always offers the same face to the Earth.
- 10. What is the energy source for stars of solar mass?
- 11. What is the Doppler effect?
- 12. How does electron degeneracy pressure arise?
- 13. What is a polytropic gas and how does the polytropic index *n* relate to the adiabatic index γ ?
- 14. What is the difference between emission nebulae and reflection nebulae?
- 15. What are the mean molecular weights of a neutral gas of hydrogen and a fully-ionized plasma of protons and electrons?

Part B.

Problems

- A spacecraft is launched form Earth to Saturn on the orbit requiring the least energy. The Sun-Saturn distance is 9.54 AU. How long a time does the journey take? Assume motion takes place in the gravitational field of the Sun only.
- 2. A meteorite approaches the Earth from an infinite distance with an initial velocity v_i moving along a straight line that in the absence of gravity would pass the Earth at a perpendicular distance *b*. The meteorite just misses the Earth's surface. If the initial velocity v_i is equal to the velocity of a particle on the Earth's surface, what is *b* in units of the Earth's radius?
- 3. What would be the relationships between the Einstein absorption, stimulated and spontaneous emission coefficients if photons were fermions in which case the occupation number would be $2/(e^{hv/kT} + 1)$?
- 4. If the position vector **r** is measured from the center of mass of the Earth and the Moon, the local tidal potential may be written.

$$\sigma(\mathbf{r}) = \frac{-GM_1}{a} - \frac{1}{2} \frac{Ga^2}{R^3} (3M_2 \cos^2 \theta + M_1)$$

where M_1 is the mass of the Earth, M_2 is the mass of the Moon, R is the Earth-Moon distance, a is the distance of the point at \mathbf{r} from the center of the Earth and θ is the angle between the Earth-Moon line and the vector connecting the point of \mathbf{r} to the center of the Earth. What is the height of the tides on the Moon induced by the Earth? The lunar radius is 1738 km, the Earth-Moon mass ratio, M_1/M_2 , is 81 and the Earth-Moon distance is 380,000 km.

- 5. Prove the virial theorem and confirm that for a gravitational field the mean kinetic energy *T* and the mean potential energy V satisfy V = -2T. What is the relationship between V and *T* for a potential varying as the *n*th power of the distance $V(r) = -kr^n$?
- 6. A star has a constant core density ρ_o out to a radius r_o . Beyond r_o out to the stellar radius R, the density $\rho(r)$ varies with radius r as $\rho_o (r_o^2/r^2)$. Calculate the mass M(r) interior to r and obtain the stellar mass M(R) in terms of ρ_o , r_o and R. Write down the equation of hydrostatic equilibrium and calculate the pressure P(r) as a function of radius r. [The pressure is zero at the radius R and continuous across the core boundary.]