The Galactic Center: From the Black Hole to the Minispiral

Jim Moran Harvard-Smithsonian Center for Astrophysics

Institut d'Astrophysique de Paris and Observatoire de Paris October 8, 2010

The Galactic Center on Three Size Scales

- Circumnuclear (molecular) Disk (CND) and Minispiral (ionized streamers)
 120 arcs / 5 pc Zhao, Blundell, Downes, Schuster, Marrone
- 2. Black hole accretion envelope (100 R_s)
 1 mas / 0.3 micro pc
 Marrone, Munoz, Rao
- 3. SgrA* radio source
 37 microarcseconds / 0.01 microparsec
 Doeleman et al.

Submillimeter Valley, Mauna Kea, HI

10 m single dish (79 m²) JCMT 15 m single dish (177 m²) `SMA eight 6 m dishes (compact configuration) (226 m²)

(aggregate area 482 m² equivalent of 25 m aperture)

Nine-Field Mosaic Image of Circumnuclear Disk in Galactic Center

CN H₂CO SiO **SMA** Data Sergio Martin Ruiz 5 arcmin field 3 arcs resolution 1.3 mm wavelength

Galactic Center CND with 230 GHz Continuum from Ionized Minispiral

H30a Recombination Line at Prominent Locations

Velocity Distribution of Gas Traced by H30a Emission

Keplerian Radial Velocity Model

Three-Dimensional Geometry of Minispiral Arms

Some Scales in the Galactic Center

 $r_s = 1.3 \times 10^{12} \text{cm} \text{ (for } 4.3 \times 10^6 \text{ solar masses)} = 10 \mu \text{as at } 8.3 \text{ kpc}$

A Hungry Black Hole

Polarization Images at Various Wavelengths from the SMA

2005 SMA Measurements of Faraday Rotation in Sgr A*

Accretion Rate and Faraday Rotation

$$\chi(\lambda,t) = \chi_0(t) + \lambda^2 RM(t)$$
$$RM = 8.1 \ge 10^5 \int n_e \overline{B} \cdot \overline{dl}$$

 $RM = -5.1 \text{ x } 10^5 \text{ rad/m}^2$

<u>Assumptions</u> equipartition density power law inner radius cutoff of Faraday screen

Accretion rate = 10^{-9} – $10^{-7} M_{Sun}$ /yr

Polarization of Sgr A* at 230 GHz (1.3 mm) (SMA)

Polarization Track for 3/31/07 Observation of SgrA*

Circular Polarization of Sgr A*

(red) Stokes I(blue) Stokes V

Fractional Circular Polarization vs. Frequency

Emission Models for SgrA*

Free Fall onto Rotating BH

Falcke et al.

Hot Spot Models (P = 27 min)

230 GHz, ISM scattered

Models: Broderick & Loeb

Spin = 0, orbit = ISCO

Spin = 0.9, orbit = $2.5 \times ISCO$

1.3mmλ Observations of SgrA*

VLBI program led by a large consortium led by Shep Doeleman, MIT/Haystack

Fits to Visibility Data

Gammie et al.

Days 96 and 97 (2009)

Observations of Cygnus A with the Jodrell Bank Intensity Interferometer at 125 MHz before 1952 by Jennison and das Gupta

The Synchrotron Emission from Cygnus A Imaged with the VLA at 6 cm Wavelength

The Minimum Apparent Size

Seeing Through the Scattering

Hot Spot Model (a = 0, i = 30)

Scattering at 230 GHz

 $\begin{array}{ccc} 0 & 0.33 & 0.67 \\ & Orbital Phase \\ a = 0, ISCO (3 r_{sch}), i = 30^{\circ}, M = 4 \times 10^{6} M_{sun} \end{array}$

Simulation of Closure Phase for Hot Spot Model SMTO–Hawaii–CARMA, 8 Gb/s, 230 GHz, 10 sec points

New (sub)mm VLBI Sites

Phase 1: 7 Telescopes (+ IRAM, PdB, LMT, Chile) Phase 2: 10 Telescopes (+ Spole, SEST, Haystack) Phase 3: 13 Telescopes (+ NZ, Africa)

EHT Phases

Phase I: 7-station 8Gb/s array Phasing ALMA and CARMA 2010–2014

<u>Phase II</u>: 10-station 32Gb/s dual-pol array Activate SEST, equip S.Pole move to 0.8mm observations 2015–2018

Phase III: 12-station array up to 64Gb/s New dishes for optimal baseline coverage 2019–2024

Progression to an Image

GR Model

7 Stations

13 Stations