The Black Hole Accretion Disk in NGC4258: One of Nature's Most Beautiful Dynamical Systems

Jim Moran

Alice Argon Lincoln Greenhill Liz Humphreys Jim Moran Mark Reid

Student projects Jim Herrnstein Adam Trotter Ann Bragg Maryam Modjaz

Optical: Slotnick, Slotnick & Block

VLBA

Angular resolution = 200 μ as (0.006 pc at 7.2 Mpc) Spectral resolution < 1 kms⁻¹

VLBI Monitoring of NGC4258 1997–2000

EPOCH	Number of Channels Imaged			
	Red	Systemic	Blue	
BM056C (1997 Mar 06)*	727	1147	58	
BM081A (1997 Oct 01) *	500	1108	20	
BM081B (1998 Jan 27) *	725	1041	6	
BM112A (1998 Sep 05)*	481	1022		
BM112B (1998 Oct 18)	232	335		
BM112C (1998 Nov 16)		324	36	
BM112E (1999 Jan 28)		319	30	
BM112F (1999 Mar 19)	207	293		
BM112G (1999 May 18)		333	38	
BM112H (1999 May 26)*	433	1140	25	
BM112J (1999 Sep 15)		309	_	
BM112K (1999 Oct 29)	205	353		
BM112L (2000 Jan 07)		331	29	
BM112M (2000 Jan 30)	169	316		
BM112N (2000 Mar 04)		338	13	
BM112O (2000 Apr 12)	158	322		
BM112P (2000 May 04)		355	12	
BG107 (2000 Aug 12)*	130	632	—	
Total * high sensitivity epoch	3,967	10,018	267	-

NGC 4258: 18 VLBI Epochs 1997–2000

Observer's view

Measurement of the Thickness of the Accretion Disk in the Vicinity of the Systemic Features

$$ho =
ho_0 e^{-z^2/2\sigma^2}$$
 $\sigma = Rc_s/v$
 $c_s = 1.5 \text{ km/s} \text{ T} = 600 \text{K} \sigma/\text{R} = 1.3 \times 10^{-3}$

CfA Maser Group: Argon et.al., ApJ, 2007. Astroph /0701396

2 12

0

Search for Zeeman Splitting of Maser Features in NGC 4258 (B < 30 mG)

Modjaz, Moran, Kondratko, & Greenhill, ApJ, 2005

Argon et al., 2007, Humphreys et al. (in prep)

Red shifted

Systemic

Blue shifted

NGC4258: Velocities, Positions, and Accelerations

The Effect of a Spiral Arm on the Velocities of Systemic Maser Features

Humphreys et al., in preparation

E-W Offset From Black Hole (mas)

y deviation from image – PA warp (mas)

Humphreys et al., in preparation

Acceleration of the "1306" kms⁻¹ Feature

Humphreys et al., in preparation

Distance Measurements to NGC 4258

• Masers

7.2 +/- 0.3 +/-0.4 Mpc Herrnstein et al., Nature 1999

- Cepheid Variables
 8.1 +/- 0.4 Mpc Maoz et al., 1999, Nature (15 Cepheids)
- 7.8 +/- 0.3 +/- 0.5 Mpc Newman et al., 2001, Ap.J. (same 15 Cepheids)

7.5 +/- 0.3 Mpc Macri et al., Ap.J. 652,1133 (300 Cepheids)

Conclusions

- 1. Bowl model well established:
 - a. 8 deg change in inclination across disk
 - b. Vertical displacements of HV features predicted by accelerations and inclination warp correlate well with observed vertical positions
- 2. Molecular disk thickness = 5.1 microarcsecs, T = 600K
- 3. Trends in accelerations in systemic features:
 - a. Change in annular radius of 5 percent, or
 - b. Interaction with spiral arm, or,
 - c. Confocal eccentric orbits
- 4. Magnetic field less than 30 mG
- 5. Evidence for periodic structure in high velocity features