
5. Spectroscopic preliminaries: Einstein A and B coefficients 
 
Great detail in Penner. 
 
A: Spontaneous emission. 
B: Induced absorption and emission; induced by the radiation field ( ).   
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Consider a 2-level system at equilibrium:                                          N0 
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Therefore: 01 10B B  and 3
10 108 .A hc B   

 
These are ratios only: absolutes later. 
Note 3 (or 3 ) dependence of A10; emission at short wavelengths is very fast, and the 
upper states have very short lifetimes (and broad line shapes – more later). 
 
If the upper and lower degeneracies are different, 
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6. Introduction to radiative transfer 
 
See Goody & Yung, Section 2.1 and Chandrasekhar for even more detail. 
 
Basic equation of radiative transfer. For intensity I: 

( ) ( ) ( )dI d I dJ                                    I 
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Scattering event:                                                   I                                                   I-dI 
 
 
 

                                                                                                                     ˆ( , , )dJ i   
Extinction completely described microscopically by absorption plus scattering. 
 Extinction  = k (absorption) + m (scattering) 

- Extinction can be described by an optical thickness, .  is equal to the product 
of the cross section (for absorption and/or scattering) per molecule, Σ (in cm2), the 
length of absorption, l (in cm), and the concentration of absorbers/scatterers, c 
(cm-3): .l c     is thus dimensionless (e.g., cm2×cm×cm-3), and extinction is 
described by 0 .I I e   A differential increment, .d c dl     

 Single scattering albedo /( )m k m   

 Phase function ˆ ˆ( , , ),i i   polarization. The phase function describes the angular 
behavior of source terms. Blackbody emission is isotropic, 1.   Rayleigh 
scattering is not, for reasons that will be presented soon. For Rayleigh scattering, 
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    = the number of steradians 

in angular integration, in the usual definition. This is important later for geometric 
scattering and absorption problems: Our solid angle Ω, from the étendue, will accept 

/ 4  of the scattered radiation, or other source term. (It would have been easier 

for some applications to define 1,d

   and eliminate the subsequent division by 

4π. See Chandrasekhar, Chapter I.3 for discussion of the choice of normalization.) 
 
The Rayleigh scattering cross section is: 
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 cm2, where  = 1 /  (m) 

( in m-1). See bodhaine.f90 for details. 
 
Aside: Polarization 
See van de Hulst, Chapter 5, Chandrasekhar Chapter 15, and Goody and Yung 2.1.3 
and following, and my favorite, Liou, Chapters 5 and 6. 



 
Consider a monochromatic, coherent light wave with direction of propagation z, angular 
frequency ω, and propagation constant k (assuming an isotropic medium) described by 

Re[ ],x yE E E x y where , .yx
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x x y yE a e e E a e e        The intensity and 

polarization state of this wave can be described by the 4-element Stokes vector, 

,

I

Q

U

V

 
 
 
 
 
 

S where 

 
* * 2 2

* * 2 2

* *

* *

,

,

2 cos ,

( ) 2 sin , .

x x y y x y

x x y y x y

x y y x x y

x y y x x y x y

I E E E E a a

Q E E E E a a

U E E E E a a

V i E E E E a a



   

   

   

  

    

 

 
This general case of a coherent plane wave has elliptical polarization with a polarization 
ellipse (the ellipse swept out by the electric field vector onto a plane perpendicular to the 
direction of propagation) determined by the relative amplitudes ax and ay and phases εx 
and εy. Linear and circular polarizations are simply special cases of the ellipse. 
 
Note that this is not a unique description of the polarization state, although it is the most 
common one, and also that there is an equivalent geometric version of this description in 
terms of the polarization ellipse, described by van de Hulst and by Goody and Yung (and 
others). Also, note that this actually over-determines the polarization state for coherent, 
elliptically-polarized, light where 2 2 2 2.I Q U V    
 
In general, light beams are not coherent, as they are the superposition of many individual 
waves. If we look at time averages (denoted by ) over the duration of a scattering 

event, then 
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In this more general case, all four parameters (or their equivalent) are required, and it can 
be shown that 2 2 2 2.I Q U V    (Try it!) The degree of polarization P is given by 

2 2 2 1/2( ) / .P Q U V I    



 
If the light is completely unpolarized, and incoherent over this period (e.g., sunlight), 

then 2 2 , 0,x y x ya a a a  and 
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Any interaction, such as a scattering event, transmission, or reflection can be described 
by a 4 × 4 Mueller (or transformation, or scattering) matrix. Google Mueller matrix to see 
a nice assortment of examples for various optical interactions. Rayleigh scattering is 
described by the Mueller matrix 
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where QR is the scattering cross 

section. (What would the Mueller matrix for Lambertian reflection be?) 
 
Back to radiative transfer 
 
The basic equation (again), recast, ignoring scattering (for now) but adding emission, for 
an optical thickness : 
 
 
     I0 ()                  (),                  I ()                      optical thickness vs. optical depth 
                                                                                       Beer-Lambert absorption law 
                         temperature T 
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 What happened to Ω? See how it cancels? 

 
                                                                               I0            1, T          2, T             I 
Note that  increments add: 
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0 ( , )[1 ],I I e B T e          as long as regions are at the same temperature. 

 



For “pure” emission (I0 = 0, ~outer space in background), with a large , the emission 
approaches, but never exceeds, that of a blackbody at the same temperature. For “pure” 
absorption (approximated in the mid IR and higher for planetary atmospheres), large   
I/I0 = 0. Looking at the pure cases: 
 
Absorption: 0/I I e   
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Turn the emission spectrum upside-down 
and you have, exactly, the absorption spectrum (once the emission spectrum has been 
normalized to the blackbody emission). 
 
Finally, when there are successive emitting layers at different temperatures, the final 
intensity is buffered toward the temperature of the final layer: 
 
 
 
                     T1 (cold)    T2 (hot)     I2 
              I1 
 
 
 
 
 
Discuss problem of nadir measurements in thermal emission (e.g., CO) and thermal 
contrast. 
 
 


