
7. Introduction to rotational spectroscopy 
 
See Bernath here. For Incredible detail, go to Herzberg, Spectra of Diatomic Molecules 
(in all the libraries). 
 
Diatomic molecules 
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where  is the reduced mass (for rotation, 

in this case). Note the common case of “hydrogenic” reduced mass: For HX molecules 
(X=F, Cl, Br, I, O, …) molecules, the reduced mass for rotation is small, similar to the 
mass of the hydrogen atom. 
 

In general, for axis i of a three-dimensional object, 2 ,i i iI r dm  where r2 is the distance 

from the axis and dmi the differential in mass. 
 
The moment of inertia tensor has diagonal elements, e.g., 2 2( )xx i i ii

I m y z   and off-

diagonal elements, e.g., .xy yx i i i
i

I I m x y    The principal axes are the choice of axes 

that diagonalize the moment of inertia tensor for an object: 0.xy xz yzI I I    

 
The rotational energy 2 / 2,E I  classically, and the rotational angular momentum 
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  However, quantum mechanics says that L must be quantized in 

units of 
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 , where h is Planck’s constant: 
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The formation of the quantum mechanical Hamiltonian operator (total energy operator 
for a conservative system) for angular momentum problems (developed for atomic 
spectra, but just as applicable to rotational angular momentum) and its solutions are 
presented in Bernath, Section 5.2. 



 

The Hamiltonian expression for rotation about one axis is 
2 2ˆ ( 1)

2 2

J J J
E

I I

  
  


 and 

( 1),E BJ J   where 
2 2

2
.

2 8

h
B

I I
 


 B is the rotational constant. Nonlinear 

polyatomic molecules have 2 or 3 rotational constants, depending on the molecule’s 
symmetry (more later). Expressing B in cm-1: 
 

← hydrogenic 
← hydrogenic 
← hydrogenic 
← not hydrogenic 
 

The spectroscopic consequences of having small, hydrogenic, moments of inertia, with 
corresponding large rotational constants, are that such molecules (or the corresponding 
rotational degrees of freedom in polyatomic molecules having one or more hydrogenic 
reduced masses about rotational axes) 1. have smaller rotational partition functions, and 
thus distribute the rotational spectra into fewer, stronger transitions; 2. have Boltzmann 
population distributions that extend to higher energies. This corresponds to the far 
infrared or submillimeter (or terahertz) region, where intensities are stronger because of 
the σ3 factor in the blackbody expression. These are NOT hydrides. In hydrides, the 
hydrogen atom has a formal negative charge (e.g., NaH,  LiH, LiAlH4). 
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   has the set of solutions (cos ) ,iM

JMP e    which are spherical harmonics, 

where J = 0, 1, 2, …. and |M|  J 
 
There are 2J + 1 “states” of same energy for each J. The degeneracy (in the absence of 
m


and .E


) = 2J + 1: 
 
J   gJ 
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1  3                                          M = -1, 0, 1 
0  1                                          M = 0 
 
This shows why we need to modify our statement from Einstein nm mnB B  to 

.n nm m mng B g B  The microscopic probabilities are the same but the summed quantities 

are not. Detailed balance requires the above relationship, e.g., 01 101 3 .B B    

Degeneracy in general is given by 2F + 1, where F is the total angular momentum of the 
state (including rotation, orbital, spin, electronic, nuclear). 
 

Reminders: Blackbody radiancy 
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B (H35Cl) 10.59 
  B (HF) 20.94 
B (OH) 18.87 
B (O2) 1.446 



The radiation density 
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 erg cm-3/cm-1 = erg cm-2. 
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    (F = flux), ( ) ( ) /F h     in cm-3 s-1. 

 
Intensities (without quantum mechanics) 
 
Details on intensities are given in several places in Bernath (see Preface to the 2nd 
Edition). Also, I am very fond of the hard-nosed derivations in Penner (especially 
Chapter 7). 
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Dipole moment: , ,x x y ze xdx     

(usually a sum over charges) 

The unit of  is the Debye (D)  1 esu-Å. One Debye: 
 

1                      1Å                   +1 
                                                                              (1 Debye)2 = 10-36 erg cm3.  
 
The intensity of a transition is proportional to 2 : 

2
2

1 2 0d       (direction cosine matrix element)2 

For future reference, (1 Bohr magneton)2 = 8.6010-41 erg cm3 
 
0 (HCl) = 1.1 D 
0 (OH) = 1.7 D 
0 (O2) = 0, but B = 2. Bohr magnetons (2. means almost exactly 2, with tiny 
corrections, including a relativistic correction). 
 
For our simple diatomic molecules, 
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The usual selection rules for rotational transitions of polar diatomics are 1J    (from 

the symmetry of a b  ). Then, the rotational lines occur at energies of E = 2B, 4B, 

6B. …. 
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                                                                      J = 0                E = 0 
Transition dipole moment: 

.mn m nR d      It is independent of degeneracy as defined: 
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Then, quantum mechanics gives: 
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The standard definition of intensity, S 
 
     u                                        Treating the induced absorption and emission (for now): 
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The above version is in “absorption form.” The entirely equivalent “emission form” can 
be derived from spontaneous emission using the Einstein A coefficient. 
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After normalizing to blackbody sterradiancy, the result is 2
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fl is the fraction of molecules in the lower state and fu in the upper state. S is in cm (my 
preference), or in cm-1/(molecules cm-2), which is more standard usage. This is because 
multiplying S by the column density of molecules, in molecules cm-2, gives the line’s 
equivalent width (W) in cm-1 (ignoring the 
Beer-Lambert law, for the moment), 
W (cm-1) = S (cm)  n (cm-2), where n is 
the column density.                                        area in cm-1 
 
 
Introduction to line shapes 
 
Given a lineshape ( )l   in cm, 

( )S l    the cross section ( )  in cm2. 

( ) n  (cm-2) ( )   S (cm)  l (cm)  n (cm-2) (just as before!) 
Then, we get the actual equivalent width after applying the Beer-Lambert law and 

integrating over the whole line. ( )(1 ) ,W e d    for absorption. What is it for 

emission? 
 


