
10. Diatomic molecules 
 
Suggested reading: Bernath Chapter 6 and Chapter 7, Section 1 (vibrations of 
diatomics). See Herzberg, Diatomics for great detail. 
 
Potential energy curves: 
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The potential curve is approximately harmonic (i.e., a parabola) near the bottom. A 
better, and still analytic, potential is the Lennard-Jones (or 6-12) potential: 
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It has nice analytic properties for calculations of spectroscopic and thermodynamic 
properties. Also note the Morse potential, in Bernath: 

 2( )( ) 1 .r reV r D e     In general, though, accurate potentials are non-analytic, and are 

derived either from inversion of spectroscopic data or from complex theoretical 
calculations. 
 
 
 
 
 



 
 
How complicated does it get? These are 
potential energy curves for O2 from P.H. 
Krupenie, The spectrum of molecular oxygen, J. 
Phys. Chem. Reference Data 1, 423-543, 1972. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The potential well pictured on the previous page is for a particular electronic state (a 
bound state), which could well be the electronic ground state (see O2, just above, for a 
more complex system of potentials). The rotational energy levels corresponding to this 
state can be expanded as: 
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Departures from the simple ( 1)BJ J  are due (primarily) to centrifugal distortion. By 

convention, only the first distortion term, 2 2( 1)DJ J   has a negative sign. D is usually 
(perhaps always?) positive. Higher terms can in principle be positive or negative. 
 
Rotational partition functions for diatomics are approximated by 2/ ,RQ T c B  which is 

accurate for B kT and negligible centrifugal distortion. This is a very occasionally 
useful approximation but it is mostly a relic of pre-computer days. As an example, the 
HITRAN Database of line parameters, which we will meet later, tabulates partition 
functions for every 1oK. Interpolating assuming 2/RQ T c B gives very accurate values 

in such a case. 
 



The vibrational energy levels (Hermite polynomials are the wave functions for the 
harmonic approximation to the vibrational potential) are approximately 

( 1/ 2), 0,1,2,E v v   where  is the vibrational constant. It is related to the 

Hooke’s law restoring force and the reduced mass for vibration, μv: / .
v

k    Note 

that the lowest vibrational state, for v = 0 has energy /2; this is the vibration zero-point 
energy, required by the Heisenberg uncertainty principle. In general, vibrations also have 
distortions and terms coupling vibration to rotation (Bernath, Eq. 7.28): 
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Vibrational transitions 
 
Torquing between vibration states is accomplished through /d dr instead of  (see 

why?) and intensities are 
2

er

d

dr


  higher-order terms (μ here is dipole moment; sorry 

about any confusion with the μv of vibrational energy levels). This explains, for example, 
why OH vibrational transitions are weak while rotational transitions are strong:  is large, 
while /d dr is small near re (it has zero derivative near re). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vibration band types: The fundamental transition is 0 1v   in absorption, 
0 1v   in emission. Overtone transitions have 1.v   Hot band transitions are 

between states with 1.v   This gets much more complicated very quickly with 
polyatomics (discussed later) since the number of fundamentals goes as 3 6N   
( 3 5N  for linear molecules), where N is the number of atoms in the molecule. 
 
The vibrational partition function is 2 2/ 2 /1 ,c T c T

vQ e e       ignoring distortion. 

(Where did the / 2 zero-point energy go? Got it? The choice of the zero of energy for 
Boltzmann statistics is arbitrary, as long as it is consistent, since any offset occurs in 
both numerators and denominators.) Often there is only one upper vibrational state that is 
thermally accessible (i.e., which has a non-negligible Boltzmann factor).* Then 
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  Again, this is now mostly a pre-computer curiosity, except for narrow 

range interpolation. 
 
*This is less true for polyatomics, with ozone and CO2 being important cases. It is also 
less true for hot conditions (astrophysical, combustion, plasmas). 
 


