
18. Atmospheric scattering details 
 
See Chandrasekhar for copious details and also Goody & Yung Chapters 7 (Mie 
scattering) and 8. 
 
Legendre polynomials are often convenient in scattering problems to expand the phase 
function . The preferred (my preferred) definition for Legendre polynomials is: 
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They form an orthonormal basis set. In order to generate them: 
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Phase function expansion is given in general as: 
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Expansion of the phase function is important in radiative transfer modeling. The required 
number of expansion terms is limited by the number of terms in the radiative transfer 
expansion itself (about which more later). For Rayleigh scattering, 

m0 = 1 
m1 = 0 
m2 = 1/10 
m>2 = 0 
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A Rayleigh  with depolarization (because of the Raman component, as before) is: 
 

23 2
((1 ) (1 )cos ),

4 2
  


       

 where  is the depolarization factor (= 0.0295 for 

air at 400 nm wavelength). @ 90 ,H
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     for unpolarized input (check that 0   for 

pure Rayleigh scattering!) for this phase function, 
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m1 = 0 
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m>2 = 0 
 
Mie scattering 
 
Aerosols and clouds, especially. Horribly complicated general solutions, lots of 
oscillations in phase functions, which average out over size distributions. 
 
Details in Goody and Yung, Chapter 7, and in notes from J. Wang. 
 
Note the distinction between absorbing and non-absorbing aerosols: Complex index of 
refraction, ˆ ˆ ˆm n in  . (NB black carbon vs. sulfates, clouds) 
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 Since 0 ˆ ˆ/ ,m n    leads to extinction. 

 
A typical Mie setup for computation (W. Wiscombe in Disort test code) has 82 Legendre 
terms in a typical haze and 299 terms in cloud. 
 
Mie scattering is strongly forward-peaked (tea kettle example), sometimes with a 
secondary backward, structured peak (a glory). 
 
The Henyey-Greenstein phase function is a common practical Mie phase approximation 
with nice analytic properties: 
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 where g is the asymmetry parameter. 0.6g   is 

typical for atmospheric aerosol. This Henyey-Greenstein phase function misses the back 
scattering peak. This can be treated using the double Henyey-Greenstein phase function: 

1 2(cos , ) (1 ) (cos , ),HG HGb g b g        where 2 0.g   

 
Goody and Yung give a typical atmospheric example (maritime haze @ 0.7 m): 

1 20.824, 0.55, 0.9724.g g b     

For HG, m0 = 1, ml = , 1, ( )l
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For the double HG, 0 1 21, (1 )l l
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Finally, note the weak wavelength-dependence of Mie scattering compared to Rayleigh 
scattering; it is sometimes 1. (Or some other low power) 
 



For Mie scattering by clouds and aerosols, the most common distribution of sizes is log-

normal: 
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 where  is the shape parameter, the ln of 

the standard distribution in width. 
 
Shettle and Fenn (see references) is a standard source for aerosol information. They 
describe atmospheric aerosol distributions as either one or the sum of two log-normal 
distributions. 
 
Details on aerosols to come! 
 
2-Stream, plane-parallel formulation 
 
Recall that k m      and /m     (single scattering albedo). If 1,  the 

scattering is conservative. 
 
Setup for plane-parallel atmosphere: 
 

0   
 

                                                                                           = normal or zenith angle 
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μ is defined as cos (θ) where θ is (often) the zenith angle ZA; sometimes the nadir angle 
(π – ZA); and even cos( ) .ZA  We will use cos cos( ).ZA    For scattering 

problems without explicit azimuthal dependence, for an arbitrary scattering function, G 
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a convenient and useful substitution (which assumes, as is normally the case, that 
expansion in cos θ is valid.). 
 
Differential scattering event: I                                    I – dI (just absorption and emission, 
k, for starters) 
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      Already in the basic Schwarzschild form of a radiative 

transfer equation (The most basic Schwarzschild form is 
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   or, expanding τ, 
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  ). It is thus sometimes preferable to keep a dimension: 
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Scattering for layered atmospheres can be formulated with  as the independent variable 
(usually) or z (or P) as the independent variable (sometimes). 
 
 is easier mathematically but tougher when polychromatic (spectral) problems are 
addressed because ( )    but ( ).z z   Also note, however, that when  changes 
rapidly (like at a cloud top), using z or P may require extra effort (like creating very fine 
vertical layers). 
 
Add scattering out of beam 
                                                                    scattering source term 
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       (Remember .k m   ) 

 
Writing ( )B   formally acknowledges that the blackbody emission has a phase function, 
even though it is isotropic. Combining source terms (J is the standard symbol for the 
source): 

 ( )(1 ) ( ) .J B I          Then, 
1

.
dI

I J
ds


   

We still need a more complex source (e.g., 0I  might be a pencil beam source or a parallel 

bundle, like I ;  the Sun) and recast with :d ds   
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Stratified plane-parallel atmosphere 
Goody and Yung 2.3.3; Chandrasekhar Chapters I and II 
 

 > 0 (outward, upward) 
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 < 0 (inward, downward)    + because  < 0 
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Then, for fluxes (e.g., radiative balance), integrate over d  (noting that the BRDF of the 
surface may introduce  -dependence). 
 
For solar radiation and negligible thermal source, calculate I   and use albedo: 
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  at surface (F = flux); then 
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  (surface). 

 
Plane parallel, direction from boundary inward (or downward) See Chandrasekhar 
Chapters I and II for details 
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   Note apparent sign                                

change in radiative transfer equation since 
μ= < 0 for the downward direction. 
 
Two-stream problem (up and down) 
 
Simplest case: isotropic scattering 1   (Schuster and Schwartzchild, from 
Chandrasekhar, leading to later discussions of quadrature*) 
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     (the factor of ½ is from integrating over 

azimuth - 2π and dividing by the isotropic phase function - 4π), or 
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Then, defining I   and I   from ( ),sign   
 

1
( )

2 2

1
( )

2 2

dI
I I I

d

dI
I I I

d








  


  

   

   
 

 
 



The extra factors of 1/2 on the left come from averaging both extinction and source terms 

as 
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        (the mean obliquity of the rays). 

 
For conservative scattering ( = 1, Chandrasekhar, Section 20) 
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     More realistic: 1, 1.    

 
 
*Gaussian quadrature “seeks to obtain the best numerical estimate of an integral by 
picking optimal abscissas at which to evaluate the function …” 
http://mathworld.wolfram.com/GaussianQuadrature.html 
 
See Chandrasekhar Sections 20-22. 


