Sketch of an approach to replace the radiative transfer integrodifferential equations by a system of linear equations (see Goody and Yung, Chapters 2 and 8)

Expansion of azimuth dependence:

In general, scattering problems have azimuthal (ϕ) dependence, even though Φ may not be explicitly azimuthally-dependent, because of geometry:

$$
\mu \frac{d I(\tau, \mu, \phi)}{d \tau}=I(\tau, \mu, \phi)-\frac{\omega(\tau)}{4 \pi} \int d \Omega^{\prime} \Phi\left(\tau, \mu, \phi, \mu^{\prime}, \phi^{\prime}\right) I\left(\tau, \mu^{\prime}, \phi^{\prime}\right)-\Sigma(\tau, \mu, \phi) .(c f . G Y 8.1)
$$

$\Sigma(\tau, \mu, \phi)$ is a "primary" source of radiation (e.g., thermal; note that Goody and Yung treat the solar source separately).
a. $\Phi\left(\tau, \mu, \phi, \mu^{\prime}, \phi^{\prime}\right)$ is expanded in spherical harmonics, $Y_{l m_{l}}(\theta, \phi)$, derived from the associated Legendre functions, which now include the ϕ-dependence:
$Y_{l m_{l}}(\theta, \phi)=N_{l m_{l}} P_{l}^{\left|m_{l}\right|}(\mu) e^{i m_{l} \phi} ; \quad P_{l}^{\left|m_{l}\right|}(\mu)=\left(1-\mu^{2}\right)^{1 / 2\left|m_{l}\right|} \frac{d^{\left|m_{l}\right|}}{d \mu^{\left|m_{l}\right|}} P_{l}(\mu)$.
$\Phi\left(\tau, \mu, \phi, \mu^{\prime}, \phi^{\prime}\right)=\sum_{l=0}^{N} \alpha_{l}(\tau) Y_{l m_{l}}(\theta, \phi)$, Where the number of terms in the expansion in l depends on the anisotropy of the phase function and the degree of accuracy required.
b. I and Σ are expanded in Fourier cosine series in the azimuthal variable ϕ, both up to terms $m=0, \cdots, N$.

Then we have $N+1$ equations in 2 variables, μ and τ (still integrodifferential), instead of $3(\mu, \tau, \phi)$:
$\mu \frac{d I^{m}}{d \tau}(\tau, \mu)=I^{m}(\tau, \mu)-\gamma_{m} \int_{-1}^{1} d \mu^{\prime} \Phi^{m}\left(\tau, \mu, \mu^{\prime}\right) I^{m}\left(\tau, \mu^{\prime}\right)-\Sigma^{m}(\tau, \mu), \quad m=0, \cdots N$.

Sketch of the Discrete Ordinate Method

Expansion gave us a series of $N+1$ integrodifferential equations in 2 variables.

The use of the discrete ordinate expansion gets rid of the integro- part to leave a system of linear differential equations.

Each of our azimuthally-independent equations (we are suppressing m-dependence for simplicity) is expanded in $\mu(=\cos \theta)$, where the most usual choice is to develop a $2-n$ stream representation with angles at the roots of the corresponding Legendre polynomials, $P_{2 n}(\mu)$.
E.g., for a 2-stream expansion, $P_{2}=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) ;|\mu|=0.57735 ;|\theta|=54.7^{\circ}$

$$
P_{4}(\mu)=\frac{3}{8}\left(\frac{35 \mu^{4}}{3}-10 \mu^{2}+1\right)
$$

4-stream: $\quad \mu \pm 1=0.3400 \quad \theta \pm 1=70.12^{\circ}$

$$
\mu \pm 2=0.8611 \quad \theta \pm 2=30.55^{\circ}
$$

This choice is the Gaussian quadrature choice. (Quadrature in general means that a definite integral is being replaced by a sum: See Wikipedia.) Gaussian quadrature has the marvelous property of being exact for $\Phi=$ a polynomial of degree $\leq 4 n$ (that is, for a $2 n$ representation!) for integrated fluxes and intensities.

Expansion gives

$$
\begin{gathered}
\mu_{ \pm i} \frac{d I}{d \tau}\left(\tau, \mu_{ \pm i}\right)=I\left(\tau, \mu_{ \pm i}\right)-\frac{\gamma}{2} \sum_{j=1}^{n} a_{j} \Phi\left(\tau, \mu_{ \pm i}, \mu_{j}\right) I\left(\tau, \mu_{j}\right)- \\
\frac{\gamma}{2} \sum_{j=1}^{n} a_{j} \Phi\left(\tau, \mu_{ \pm i}, \mu_{-j}\right) I\left(\tau, \mu_{-j}\right)-\Sigma\left(\tau, \mu_{ \pm i}\right), \quad i=1, n .
\end{gathered}
$$

The expansion coefficients are given by the Gauss quadrature formula:
$a_{j}=\frac{1}{P_{m}^{\prime}\left(\mu_{j}\right)} \int_{-1}^{1} \frac{P_{m}(\mu) d \mu}{\mu-\mu_{j}}$, where $P_{m}^{\prime}\left(\mu_{j}\right)=\left(\frac{d P_{m}}{d \mu}\right)_{\mu=\mu_{j}}$.

These are tabulated extensively (see Chandrasekhar Chapter II and Table III), although they may now be easily computed as needed. There are other quadrature formulae, but they do not give results accurate to $\Phi \leq 4 n$.

We have now replaced our integrodifferential equation in 3 variables with a set of linear differential equations which may be solved by standard methods.

Proceed by setting up a layered atmosphere with $\varepsilon, \omega, \Phi$ for each layer (interpolate from layered in z or P if necessary to layered in $\tau, \tau=\tau(\sigma)$). This adds an extra dimension (\# layers) to the problem: complicated boundary value problem. It can also become complicated when τ changes rapidly.

Other complications:

1. Non-homogeneous terms (e.g., beam source);
2. Strongly-peaked Φ s may require other choice for discretization (DISORT and LIDORT discuss this)
3. Output at other than stream angles - uses a complicated (but accurate) interpolation formula or put in an extra stream in the calculation with zero weight (see DISORT
and LIDORT). The most basic use is for flux and intensity integrals (see Goody and Yung, Chapters 2 and 8).

For a single homogeneous layer,
$I\left(\tau, \mu_{i}\right)=\sum_{j=-n}^{n} L_{j} g_{j}\left(\mu_{i}\right) e^{-k_{j} \tau}$ (homogeneous) $+I_{p}\left(\tau, \mu_{i}\right)$ (particular solution):
Solution to $2 n$ first-order differential equations with constant coefficients, plus nonhomogeneous terms, where the k_{j} and g_{j} are the eigenvalues and eigenvectors of the solution to the differential equations based on the discrete ordinate expansion (cf. GY 8.30).

The multiple-layer solution is then a complicated boundary-value problem where the intensity for each azimuthal component and stream angle must be continuous across layer interfaces.

DISORT is the standard discrete ordinate development. It is widely-used and generally available (see class website for references).

LIDORT (developed at the CfA by Rob Spurr, since founder of RT Solutions, Inc) adds calculation of the full Jacobian by a full analytical perturbation analysis of intensity field: Yields Jacobians (weighting functions) in one pass (no finite-differencing); pseudospherical and quasi-spherical versions available; surface BRDF; vector (polarization) version available. Availability: http://www.rtslidort.com/.

There are many other approaches:

- Doubling and adding method (e.g., DAK)
- Successive orders of scattering
- Monte Carlo methods
-

See Goody and Yung, Chapter 8 for details.

