
Sketch of an approach to replace the radiative transfer integrodifferential equations 
by a system of linear equations (see Goody and Yung, Chapters 2 and 8) 
 
Expansion of azimuth dependence: 
 
In general, scattering problems have azimuthal ( )  dependence, even though  may not 
be explicitly azimuthally-dependent, because of geometry: 
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          (cf. GY 8.1) 

 
( , , )    is a “primary” source of radiation (e.g., thermal; note that Goody and Yung 

treat the solar source separately). 
 
a. ( , , , , )       is expanded in spherical harmonics, ( , ),

ll mY    derived from the 

associated Legendre functions, which now include the -dependence: 
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   Where the number of terms in the expansion in l 

depends on the anisotropy of the phase function and the degree of accuracy required.  
 
b. I and  are expanded in Fourier cosine series in the azimuthal variable , both up to 

terms 0, , .m N   
 
Then we have 1N   equations in 2 variables, μ and τ (still integrodifferential), instead of 
3 ( , , ) :    
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Sketch of the Discrete Ordinate Method 
 
Expansion gave us a series of 1N   integrodifferential equations in 2 variables. 
 
The use of the discrete ordinate expansion gets rid of the integro- part to leave a system 
of linear differential equations. 
 
Each of our azimuthally-independent equations (we are suppressing m-dependence for 
simplicity) is expanded in ( cos ),   where the most usual choice is to develop a 2-n 
stream representation with angles at the roots of the corresponding Legendre 
polynomials, 2 ( ).nP   

 



E.g., for a 2-stream expansion, 2
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4-stream: 
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This choice is the Gaussian quadrature choice. (Quadrature in general means that a 
definite integral is being replaced by a sum: See Wikipedia.) Gaussian quadrature has the 
marvelous property of being exact for  = a polynomial of degree 4n (that is, for a 2n 
representation!) for integrated fluxes and intensities. 
 
Expansion gives 
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The expansion coefficients are given by the Gauss quadrature formula: 
 

1

1

1 ( )
,

( )
m

j
m j j

P d
a

P

 
  


   where ( ) .

j

m
m j

dP
P

d  


 

    
 

 

 
These are tabulated extensively (see Chandrasekhar Chapter II and Table III), although 
they may now be easily computed as needed. There are other quadrature formulae, but 
they do not give results accurate to 4 .n   
 
We have now replaced our integrodifferential equation in 3 variables with a set of linear 
differential equations which may be solved by standard methods. 
 
Proceed by setting up a layered atmosphere with , ,    for each layer (interpolate from 
layered in z or P if necessary to layered in , ( ))    . This adds an extra dimension (# 
layers) to the problem: complicated boundary value problem. It can also become 
complicated when  changes rapidly. 
 
Other complications: 
1. Non-homogeneous terms (e.g., beam source); 
2. Strongly-peaked s may require other choice for discretization (DISORT and 

LIDORT discuss this) 
3. Output at other than stream angles – uses a complicated (but accurate) interpolation 

formula or put in an extra stream in the calculation with zero weight (see DISORT 



and LIDORT). The most basic use is for flux and intensity integrals (see Goody and 
Yung, Chapters 2 and 8). 

 
For a single homogeneous layer, 
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   (homogeneous) ( , )p iI    (particular solution): 

Solution to 2n first-order differential equations with constant coefficients, plus non-
homogeneous terms, where the kj and gj are the eigenvalues and eigenvectors of the 
solution to the differential equations based on the discrete ordinate expansion (cf. GY 
8.30). 
 
The multiple-layer solution is then a complicated boundary-value problem where the 
intensity for each azimuthal component and stream angle must be continuous across layer 
interfaces. 
 
DISORT is the standard discrete ordinate development. It is widely-used and generally 
available (see class website for references). 
 
LIDORT (developed at the CfA by Rob Spurr, since founder of RT Solutions, Inc) adds 
calculation of the full Jacobian by a full analytical perturbation analysis of intensity field: 
Yields Jacobians (weighting functions) in one pass (no finite-differencing); pseudo-
spherical and quasi-spherical versions available; surface BRDF; vector (polarization) 
version available. Availability: http://www.rtslidort.com/. 
 
There are many other approaches: 
 Doubling and adding method (e.g., DAK) 
 Successive orders of scattering 
 Monte Carlo methods 
 …. 
 
See Goody and Yung, Chapter 8 for details. 
 


