
Spectrum (and other data) fitting 
 
We normally fit by minimizing a cost function, usually 2 :  
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where the ak are parameters (m of them in total), yi are measurements (e.g., the spectrum), 
xi are values of independent variable (e.g. wavelength or wavenumber), and i are the 
uncertainties (1/i

2 = weight). 

Linear case: 1
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   The ( )k iX x  are basis functions. They can be 

wildly nonlinear in xi (like a spectrum usually is): only the ak dependence is linear. They 
might be cross sections for different molecules, for example, making up a spectrum that 
is optically thin or that can be linearized using the Beer-Lambert condition. Then, 
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 is the vector of the parameters) 
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 T denotes the transpose of the matrix. 

Our vector of parameters is thus 1( ) .T Ta A A A b  
 

TA A  is usually called 
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  = ½ of the Hessian matrix (2nd derivatives of 2 )  
1 1( ) ,TA A C    the covariance matrix (of the standard errors). The uncertainty in 

each parameter is ( ) .j jj jka c c  gives the covariance among parameters. 

The correlation matrix .ij

ii jj

c

c c
  



Minimum 2  gives a goodness of fit indicator, 
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is the 

probability that 2 should exceed the fitted 2 by chance (see Numerical Recipes for 

details). Rule of thumb: 2 ~ n m  is good. 
 
However, if the i are not known or trusted and the model is known to be good, one may 

use 
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  If we do this, however, we 

cannot obtain an independent goodness of fit. 
 
Aside – forms of spectral noise 
 
Nonlinear fitting 
 

In general, fitting is nonlinear: 2 2
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   (suppress i for now; it can 

always be re-introduced). 
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may be calculated analytically sometimes (e.g., with some Hamiltonians in 

spectroscopic analysis, and note LIDORT radiative transfer model, where Jacobian of the 
intensity field is determined analytically), but usually not. 

For convenience, 
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   and also (for later use) 
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                                                                               0            unstable 
 
Note that we are going to discard the 2nd order term before proceeding further. The 
justifications are that a solution involving first derivatives should be valid for fitting an 
arbitrary function near the 2 minimum and that ( , )iyi F x a  should be near zero (or 

average to near zero) near the minimum, and should average out for a precise model, thus 
allowing us to avoid the necessity to calculate second derivates (and also to avoid the 
instabilities they can generate if there are significant outliers or if the model does not 
precisely fit the data – see Numerical Recipes for details). Also, Bevington and Robinson 
note that it is “convenient to use a first order approximation for fitting nonlinear 
functions.” 



This shows one dimension of the n-dimensional 
minimization for j = 1, , m. 

Then, 
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     the Hessian matrix 

As before, 
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Consider how 2  will vary near the minimum 
for one of the set of parameters by expanding 
in a Taylor series about a point near the 
minimum: 
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At the minimum, 
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 and thus 2  is 

approximately a quadratic function in the 
parameter.  
 
Now expand 2  for all parameters in a 
Taylor series about a starting point 

2 2
0 (   of the starting guess on parameters 
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At the minimum, the first derivatives are zero: 
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This is now analogous to our linear problem of before, now linearized in :a  
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 (covariance of the standard errors, inverse of the Hessian of 

2 ), the correlation matrix is /ij ii jjc c c  as before and the uncertainties of the parameters 

are given as ( ) ,j jja c    but with some caveats (cf. Numerical Recipes), including the 

correlation among parameters, and departures from assumptions of normally-distributed 
(Gaussian) errors. 
 
Aside on correlated parameters 
 
The correlation matrix describes how entangled parameters are. Even with a “perfect” 
model, the fact that the measurements have noise will cause parameters to be correlated, 



particularly when they are physically related (e.g., for O3 versus height). Negative 
correlation (the most common type) means that an increase in parameter ai will be 
partially offset by a decrease in parameter aj. 
 
Consider a case where atmospheric ozone measurements are fitted to a model with 11 
layers, 3 in the troposphere (1-3) and 8 in the stratosphere (4-11). If ai and aj are adjacent 
parameters (or even if they are not adjacent) denoting ozone amounts, with uncertainties 

i and j, then ai + aj has uncertainty 
1/ 22 2 2 ,i j i j ij i jcor           where corij is the 

off-diagonal term of the (symmetric) correlation matrix. corij would normally be 
negative, so that the uncertainty for the sum of the ozone in the two layers would be less 
than the RSS of the corresponding layer uncertainties. To put it more simply, in terms of 
the covariance matrix, 1/2[ 2 ] .i j ii jj ijc c c      

 
The uncertainty for the tropospheric ozone is 
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The uncertainty for the stratospheric ozone is 
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The uncertainty for the total ozone is 
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Back to fitting: We showed a case where we started close enough to the multi-
dimensional minimum to solve by a linear expansion. We would be done except for the 
pesky problem of finding the minimum efficiently. Numerous methods, such as grid 
searches, etc., exist for doing so. For many nonlinear problems the Levenberg-Marquardt 
method is a standard and generally useful approach. It provides an elegant way to 
approach the solution (the minimum) quickly when the starting guess is far away and 
gently when the minimum is being approached. 
 
The Levenberg-Marquardt method 
 
If we are far from the solution we want to travel in the direction opposite the gradient 
(i.e., in the direction of the steepest descent). When we get near, we would like to switch 
over to moving along the curvature (as above), linearizing the solution. 



Gradient search: The gradient vector is 
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 a unit vector in the 

direction of aj. Take a step in the direction of steepest descent, i.e., 2 ,  then re-
calculate the gradient (perhaps using the Hessian to do so). 

Remember 
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 so that ka (the step) = constant .k  But what is the 

constant? How do we choose it? This is the clever part of the Levenberg-Marquardt 
method: k has dimension 1/ak, so the constant must have dimension 2.ka  So far, only 

1/kk has dimension 2.ka  So, choose a step ,k
k

kk

a



 or .k kk ka    is an adjustable 

parameter introduced to modulate the kk scale. The following change, employing an 

adjustable , allows us to vary continuously between a gradient search (steepest descent) 
and a linearized solution as the minimum is approached: 
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Large  steepest descent ( is diagonally dominant) 
Small  linearized (Newton’s method) 
 
The recipe: Start with 0.001  (for historical reasons) and starting parameters a . 
 

1. Compute 2( )a  

2. 1( ) ,a    compute 2( )a a   

3. If 2 2( ) ( ) 10a a a                                                                                            

If 2 2( ) ( ) /10,a a a a a a            
 
Convergence: 

1. Preset minimum in 2  (sometimes referred to as the “only” way) 
2. Relative change in all parameters < preset 
3. Maximum iterations 

 
After convergence, set 0   and calculate 1.C   
 
A very nice version of a similar method, with lots of bells and whistles comes from 
CERN: elsunc.lc, elsunc.f90 (available on the website). 
 
Caveats: There can be local minima that confuse the solution and broad minima that 
make convergence slow. There are cases when parameters may be close to degenerate (as 
in the ozone case mentioned above) where parameters are strongly correlated and where 
the interplay among parameters slows conversion. 
 
 



More on retrieval theory 
 
Optimal estimation (and much other retrieval theory, see C. Rodgers references for 
details) is often derived in terms of: 
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The ijK  give a broad idea of information content. They show the part of the atmospheric 

profile (e.g.) that is represented by each measurement. Remember that 
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   (in the linear case). Then, ( ).ij jK X i  

 
Example: SBUV weighting functions 
 10 spectral bands (albedo) 
 1 total ozone construct 
 
Contribution functions 
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  â   final parameters; 0 :a a priori parameters 

These are sensitivities of the solution vector â  to the measurements (y) and the a priori 
information 0( ).a  They are normally calculated after the solution, to provide a 
diagnostic. 
 
Averaging kernels 
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 the way the solution changes, given changes in the atmosphere. 

“Each channel contributes in a complicated way to the overall retrieval.” 
 
Gives an estimate of the vertical resolution in the case of SBUV retrievals, for example. 
 
Compare with a -function or “bump” analysis. 
 
Often (as in the case of several instruments on the NASA EOS satellites) it has become 
common to use Twomey-Tikhonov/Phillips-Tikhonov regularization and do Optimal 
Estimation-type diagnostics at the end, i.e., yD  and A  at the linearization point. 

 
Why constrain the solution? (i.e., why do regularization?) Measurement noise may easily 
be amplified in the retrieval process – especially in the inversion of the   (curvature) 
matrix: 
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 at the linearization point. 

 
Twomey-Tikhonov regularization 
 
The linear solution from before was 1( ) .T Ta A A A b  

It can be smoothed by 1( ) .T Ta A A H A b     is an adjustable parameter, H is a square 
matrix (e.g., ).H I  The purpose of introducing this smoothing contribution is to 
decrease noise sensitivity. Common choices: 
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This will smooth out differences in a  (zig-zagging of solution). 
 
Squared 2nd differences, 2 2 2
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This smoothes “2nd derivatives” in the solution vector. 
 
Outline of several other important methods 
 
First, develop the matrix version of the cost function 
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yS  is the measurement error covariance matrix, ( , ) , 0,y i j i jS i j i j      for 

uncorrelated uncertainties, a common assumption for measurements. 
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Optimal Estimation solution 
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We have added a vector of a priori parameters 0a  and their covariance 1.aS   Then, if 

there is no correlation among a priori values (index j) or measurements (index i), the 
covariance matrices are diagonal and 
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   However, there usually is correlation. The a 

priori values are treated as data. They act to constrain the solution based upon what we 
know about the problem, e.g. ozone values from a climatology. The trick is to estimate 

,aS  which is to say, how confident are we about how well we know the a priori so that it 

can be appropriately weighted in the solution. A typical form for aS  is 
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 h is the correlation length. 

 
Then, proceed to develop about a linearization point – if the problem is nonlinear, 
estimate and then re-linearize as before. Upon taking a step in parameter space, say from 

ka  to 1,ka   2  is re-evaluated as 
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        where the notation 

implies summing the squares of the diagonal elements. Upon convergence, the solution 

has covariance 1 1 1( ) ,T
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In more standard notation, for a step in parameter space 
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Other methods: Onion-peeling, global fitting – for limb. 


