EPS-238
 2012 Final Project

Assigned Thursday, April 19

Due Monday, May 07 COB - Electronically, to my office, or by arrangement
Calculate the spectrum of the Earth as seen from space as back-scattered radiance I and as the albedo spectrum ($\pi \times$ radiance $/(\cos (S Z A) \times$ irradiance $)$); or, alternatively, and after some discussion, another planet of your choice.

Calculate from 280-1000 nm @ 1 nm resolution, then try degraded resolutions to see where essential features of the Earth's I / I_{0} spectrum may be detected in broader spectral bands.

Include Rayleigh scattering.
Estimate average fractional cloud coverage, use cloud albedo of 0.8 , and put clouds at 5 km .
Treat reflectance as Lambertian (which makes the spherical surface into a disk problem).
Note where the vegetation red edge would affect the spectrum had you included it. Might it be useful for extrasolar planet searches?

Wavelength-dependent surface reflectance values for various surface types are in albedo.dat (see notes therein); a splined version is also available.
$\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$, and O_{2} cross sections at 1 nm resolution:
o2forfinal.dat
o3forfinal.dat
h2oforfinal.dat

The solar spectrum at 1 nm resolution:
solarforfinal.dat
I will be in the classroom April 26 for consulting on the project, and also generally available.

