Radiative transfer modeling

2-Stream, plane-parallel formulation

Recall that $\varepsilon_{\sigma}=k_{\sigma}+m_{\sigma}$ and $m_{\sigma} / \varepsilon_{\sigma}=\omega_{\sigma}$ (single scattering albedo). If $\omega_{\sigma}=1$,the scattering is conservative.

Setup for plane-parallel atmosphere:

μ is defined as $\cos (\theta)$ where θ is (often) the zenith angle $Z A$; sometimes the nadir angle $(\pi-Z A)$; and even $\mu=|\cos (Z A)|$. We will use $\mu=\cos \theta=\cos (Z A)$. For scattering problems without explicit azimuthal dependence, for an arbitrary scattering function, G $\int_{\Omega} G(\Omega) d \Omega=\int_{0}^{2 \pi} \int_{0}^{\pi} G(\theta, \phi) \sin \theta d \theta d \phi=2 \pi \int_{0}^{\pi} G(\cos \theta) \sin \theta d \theta=2 \pi \int_{-1}^{1} G(\mu) d \mu$, a convenient and useful substitution (which assumes, as is normally the case, that expansion in $\cos \theta$ is valid.).
Differential scattering event: $I \longrightarrow \square \longrightarrow I-d I$ (just absorption and emission, k, for starters)
$d I=-I d \tau+B d \tau, \quad \frac{-d I}{d \tau}=I-B$ Already in the basic Schwarzschild form of a radiative transfer equation (The most basic Schwarzschild form is $\frac{-d I_{v}}{d \tau}=I_{v}-J_{v}$ or, expanding τ, $\frac{-d I_{v}}{k_{v} \rho d s}=I_{v}-J_{v}$). It is thus sometimes preferable to keep a dimension:
$\frac{-1}{\varepsilon} \frac{d I}{d s}=I-B$, so $d \tau=\varepsilon d s$

Scattering for layered atmospheres can be formulated with τ as the independent variable (usually) or z (or P) as the independent variable (sometimes).
τ is easier mathematically but tougher when polychromatic (spectral) problems are addressed because $\tau=\tau(\sigma)$ but $z \neq z(\sigma)$. Also note, however, that when τ changes rapidly (like at a cloud top), using z or P may require extra effort (like creating very fine vertical layers).

Add scattering out of beam

$$
\begin{aligned}
d I & =-I \varepsilon d s+B k d s+m I \Phi(\theta) d s \longleftarrow \text { scattering source term } \\
& =-I \varepsilon d s+B(\theta) \varepsilon(1-\omega) d s+I \varepsilon \omega \Phi(\theta) d s . \quad \text { (Remember } \varepsilon=k+m .)
\end{aligned}
$$

Writing $B(\theta)$ formally acknowledges that the blackbody emission has a phase function, even though it is isotropic. Combining source terms (J is the standard symbol for the source):
$\varepsilon J \equiv \varepsilon[B(\theta)(1-\omega)+I \omega \Phi(\theta)]$. Then, $\frac{-1}{\varepsilon} \frac{d I}{d s}=I-J$.
We still need a more complex source (e.g., I_{0} might be a pencil beam source (LIDAR) or a parallel bundle, like $I_{\odot} ; \odot=$ the Sun) and recast with $d \tau=\varepsilon d s$:
$d I=-I d \tau+B(\Omega)(1-\omega) d \tau+\frac{\omega d \tau}{4 \pi} \int d \Omega^{\prime}\left[I\left(\Omega^{\prime}\right) \Phi\left(\Omega^{\prime}, \Omega\right)\right]$.
function of relative θ
$-\frac{d I}{d \tau}=I-B(1-\omega)-\frac{\omega}{4 \pi} \int d \Omega^{\prime} I\left(\Omega^{\prime}\right) \Phi\left(\Omega^{\prime}, \Omega\right)=I-J$.

Stratified plane-parallel atmosphere

Goody and Yung 2.3.3; Chandrasekhar Chapters I and II
$\boldsymbol{\mu}>\boldsymbol{0}$ (outward, upward)
$I^{+}(\tau, \mu)=I^{+}\left(\tau_{s}, \mu\right) e^{-\left(\tau_{1}-\tau\right) / \mu}+\int_{\tau_{s}}^{\tau} \frac{d \tau^{\prime}}{\mu} J\left(\tau^{\prime}, \mu\right) e^{-\left(\tau^{\prime}-\tau\right) / \mu}$
$\boldsymbol{\mu}<\mathbf{0}$ (inward, downward) + because $\mu<0$
$I^{-}(\tau, \mu)=I^{-}(0, \mu) e^{+\tau / \mu}-\int_{0}^{\tau} \frac{d \tau^{\prime}}{\mu} J\left(\tau^{\prime}, \mu\right) e^{+\left(\tau-\tau^{\prime}\right) / \mu}$
Then, for fluxes (e.g., radiative balance), integrate over $d \Omega$ (noting that the $B R D F$ of the surface may introduce ϕ-dependence).

For solar radiation and negligible thermal source, calculate I^{-}and use albedo: $a_{\sigma}=\frac{F_{\sigma}^{+}}{F_{\sigma}^{-}}$at surface $(F=$ flux $)$; then $J_{\sigma}=\frac{a_{\sigma}}{\pi} F_{\sigma}^{-}($surface $)$.

Plane parallel, direction from boundary inward (or downward) See Chandrasekhar Chapters I and II for details

| $\mu \frac{d I}{d \tau}=I-J$ | Note apparent sign |
| :--- | :--- | :--- |
| change in radiative transfer equation since | |$\quad \mu \boldsymbol{\uparrow} \quad \underset{ }{\mu}$ $\mu<0$ for the downward direction.

Two-stream problem (up and down)
Simplest case: isotropic scattering $\Phi=1$ (Schuster and Schwartzchild, from Chandrasekhar, leading to later discussions of quadrature*)
$d I(\tau, \mu)=\frac{I(\tau, \mu) d \tau}{\mu}-\frac{d \tau}{2 \mu} \int_{-1}^{1} \omega I\left(\tau, \mu^{\prime}\right) d \mu^{\prime}$ (the factor of $1 / 2$ is from integrating over azimuth -2π and dividing by the isotropic phase function -4π), or
$\mu \frac{d I(\tau, \mu)}{d \tau}=I(\tau, \mu)-\frac{\omega}{2} \int_{-1}^{1} I\left(\tau, \mu^{\prime}\right) d \mu^{\prime}$.

Then, defining I^{+}and I^{-}from $\operatorname{sign}(\mu)$,
$+\frac{1}{2} \frac{d I^{+}}{d \tau}=I^{+}-\frac{\omega}{2}\left(I^{+}+I^{-}\right)$
$-\frac{1}{2} \frac{d I^{-}}{d \tau}=I^{-}-\frac{\omega}{2}\left(I^{+}+I^{-}\right)$

The extra factors of $1 / 2$ on the left come from averaging both extinction and source terms as $\int_{0}^{\pi} \sin \theta \cos \theta d \theta / \int_{0}^{\pi} \sin \theta d \theta=1 / 2$ (the mean obliquity of the rays).

For conservative scattering ($\omega=1$, Chandrasekhar, Section 20)
$\frac{d I^{+}}{d \tau}=\frac{d I^{-}}{d \tau}=I^{+}-I^{-}$. More realistic: $\Phi \neq 1, \omega \neq 1$.
*Gaussian quadrature "seeks to obtain the best numerical estimate of an integral by picking optimal abscissas at which to evaluate the function ..."
http://mathworld.wolfram.com/GaussianQuadrature.html
See Chandrasekhar Sections 20-22.

