
Radiative transfer modeling 
 
2-Stream, plane-parallel formulation 
 
Recall that k mσ σ σε = +  and /mσ σ σε ω=  (single scattering albedo). If 1,σω = the 
scattering is conservative. 
 
Setup for plane-parallel atmosphere: 
 
0τ =  

 
                                                                                          θ  = normal or zenith angle 
                                                 θ                                        µ  = cosθ  
     τ  
                                                                                          τ  = optical depth 
                                                                                           (not optical thickness) 
 

sτ τ=  
 
 
µ is defined as cos (θ) where θ is (often) the zenith angle ZA; sometimes the nadir angle 
(π – ZA); and even cos( ) .ZAµ = We will use cos cos( ).ZAµ θ= =  For scattering 
problems without explicit azimuthal dependence, for an arbitrary scattering function, G 
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a convenient and useful substitution (which assumes, as is normally the case, that 
expansion in cos θ is valid.). 
 
Differential scattering event: I                                    I – dI (just absorption and emission, 
k, for starters) 
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Scattering for layered atmospheres can be formulated with τ as the independent variable 
(usually) or z (or P) as the independent variable (sometimes). 
 
τ is easier mathematically but tougher when polychromatic (spectral) problems are 
addressed because ( )τ τ σ=  but ( ).z z σ≠  Also note, however, that when τ changes 
rapidly (like at a cloud top), using z or P may require extra effort (like creating very fine 
vertical layers). 
 
Add scattering out of beam 
                                                                    scattering source term 
dI = −Iεds + Bkds +mIΦ(θ )ds

= −Iεds + B(θ )ε (1−ω )ds + IεωΦ(θ )ds.
       (Remember .k mε = + ) 

 
Writing ( )B θ  formally acknowledges that the blackbody emission has a phase function, 
even though it is isotropic. Combining source terms (J is the standard symbol for the 
source): 

[ ]( )(1 ) ( ) .J B Iε ε θ ω ω θ≡ − + Φ  Then, 1 .dI I J
dsε

− = −  

We still need a more complex source (e.g., 0I  might be a pencil beam source (LIDAR)  
or a parallel bundle, like I ;  = the Sun) and recast with :d dsτ ε=  

dI = −Idτ + B(Ω)(1−ω )dτ + ωdτ
4π

d ′Ω I ( ′Ω )Φ( ′Ω ,Ω)⎡⎣ ⎤⎦∫ .  

                                                                                                function of relative θ 
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Stratified plane-parallel atmosphere 
Goody and Yung 2.3.3; Chandrasekhar Chapters I and II 
 
µ  > 0 (outward, upward) 
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µ  < 0 (inward, downward)    + because µ < 0 
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Then, for fluxes (e.g., radiative balance), integrate over dΩ  (noting that the BRDF of the 
surface may introduce φ -dependence). 
 



For solar radiation and negligible thermal source, calculate I −  and use albedo: 
Fa
F
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σ
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+

−=  at surface (F = flux); then aJ Fσ
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−=  (surface). 

 
Plane parallel, direction from boundary inward (or downward) See Chandrasekhar 
Chapters I and II for details 
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change in radiative transfer equation since 
µ < 0 for the downward direction. 
 
Two-stream problem (up and down) 
 
Simplest case: isotropic scattering 1Φ =  (Schuster and Schwartzchild, from 
Chandrasekhar, leading to later discussions of quadrature*) 
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azimuth - 2π and dividing by the isotropic phase function - 4π), or 
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Then, defining I +  and I −  from ( ),sign µ  
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The extra factors of 1/2 on the left come from averaging both extinction and source terms 
as 

0 0
sin cos / sin 1/ 2d d

π π
θ θ θ θ θ =∫ ∫  (the mean obliquity of the rays). 

 
For conservative scattering (ω = 1, Chandrasekhar, Section 20) 
 

.dI dI I I
d dτ τ

+ −
+ −= = −  More realistic: 1, 1.ωΦ ≠ ≠  

 
 
*Gaussian quadrature “seeks to obtain the best numerical estimate of an integral by 
picking optimal abscissas at which to evaluate the function …” 



http://mathworld.wolfram.com/GaussianQuadrature.html 
 
See Chandrasekhar Sections 20-22. 


