Radiative transfer modeling
2-Stream, plane-parallel formulation

Recall that £, =k_+m_and m_/&_ = @, (single scattering albedo). If @) =1,the
scattering is conservative.

Setup for plane-parallel atmosphere:

7=0 A

6 = normal or zenith angle

o\ U = cos@

7 = optical depth
(not optical thickness)

w1 is defined as cos (¢) where @ is (often) the zenith angle ZA4; sometimes the nadir angle
(m—ZA); and even y = |cos(ZA)| .We will use 1 = cos @ = cos(ZA). For scattering

problems without explicit azimuthal dependence, for an arbitrary scattering function, G
2r T 1

jG(Q)dQ = j jG(e, )sin 6d0dp =2 j G(cos 8)sin 6dO = 27zj G(u)du,

a convenient and useful substitution (which assumes, as is normally the case, that
expansion in cos 6 is valid.).

Differential scattering event: /| ——p» — [ — dI (just absorption and emission,
k, for starters)

dl =—Idt+ Bdr, _d_d] = I — B Already in the basic Schwarzschild form of a radiative
T

transfer equation (The most basic Schwarzschild form is ;HV =1,—J, or, expanding 1,
T
—dI,
k,pds

14

=1, —J,). It is thus sometimes preferable to keep a dimension:

_—1£:I—B, so dt=é&ds
£ ds



Scattering for layered atmospheres can be formulated with 7 as the independent variable
(usually) or z (or P) as the independent variable (sometimes).

7T is easier mathematically but tougher when polychromatic (spectral) problems are
addressed because 7 =17(0) but z # z(0). Also note, however, that when 7 changes

rapidly (like at a cloud top), using z or P may require extra effort (like creating very fine
vertical layers).

Add scattering out of beam

scattering source term
dl = —Ieds + Bkds + mI®(0)ds 4

R b eE=k+m.
— —leds+ B@O)e(-0)ds + e ®(@)ds. oo m.)
Writing B(@) formally acknowledges that the blackbody emission has a phase function,

even though it is isotropic. Combining source terms (J/ is the standard symbol for the
source):

eJ =e[B(0)(1-w)+ [w®(6)]. Then, —ldr =I1-J.
£ ds

We still need a more complex source (e.g., I, might be a pencil beam source (LIDAR)
or a parallel bundle, like /_; © =the Sun) and recast with dz = &ds :

dl = —1d7 + B(Q)(1- w)d7 + “L‘”jdg'[z(g ), Q) |

function of relative 6

_9_B—ay-2 [ar@)o@.0)=1-J.
dt iy

Stratified plane-parallel atmosphere
Goody and Yung 2.3.3; Chandrasekhar Chapters I and 11

M > 0 (outward, upward)

]*(T IU) ]Jr(Tm:u)e (r-7)/ 1 +J‘ p J(T ,U) —(7'-7)/u

M <0 (inward, downward) _ + because <0

T /7

I (z,,)=1"(0,u) et _J%J(Tr’ﬂ)e+(r—r')/ﬂ

0

Then, for fluxes (e.g., radiative balance), integrate over dQ (noting that the BRDF of the
surface may introduce ¢ -dependence).



For solar radiation and negligible thermal source, calculate /- and use albedo:

a, = F—"_ at surface (F' = flux); then J_ = Y . (surface).
T

o

Plane parallel, direction from boundary inward (or downward) See Chandrasekhar
Chapters I and II for details

dr
change in radiative transfer equation since
1 < 0 for the downward direction.

yﬂ =1 —J Note apparent sign ,uT l’t’

Two-stream problem (up and down)

Simplest case: isotropic scattering ® =1 (Schuster and Schwartzchild, from
Chandrasekhar, leading to later discussions of quadrature*)

1
1@ pdr _dz J Il (t,1)du’ (the factor of ¥ is from integrating over

2u
azimuth - 27 and dividing by the isotropic phase function - 4x), or

dI(z, 1) o | "o
— 2 = (1) —— | I(z,1)d L.
p= =) 2_{(#)#

di(z,u)=

Then, defining /™ and I~ from sign (1),

LS
2dt 2

_ldizli—g)([*—_i.[i)
2drt 2

The extra factors of 1/2 on the left come from averaging both extinction and source terms
as J: sinf@cos6d6 /JZ sin@d@ =1/2 (the mean obliquity of the rays).

For conservative scattering (= 1, Chandrasekhar, Section 20)

dl :dL:F—I‘, More realistic: ®#1, w#1.
dt dr

*Gaussian quadrature “seeks to obtain the best numerical estimate of an integral by
picking optimal abscissas at which to evaluate the function ...”



http://mathworld.wolfram.com/GaussianQuadrature.html

See Chandrasekhar Sections 20-22.



