Radiative transfer modeling

2-Stream, plane-parallel formulation

Recall that $\varepsilon_{\sigma} = k_{\sigma} + m_{\sigma}$ and $m_{\sigma} / \varepsilon_{\sigma} = \omega_{\sigma}$ (single scattering albedo). If $\omega_{\sigma} = 1$, the scattering is conservative.

Setup for plane-parallel atmosphere:

 μ is defined as cos (θ) where θ is (often) the zenith angle ZA; sometimes the nadir angle $(\pi - ZA)$; and even $\mu = |\cos(ZA)|$. We will use $\mu = \cos\theta = \cos(ZA)$. For scattering problems without explicit azimuthal dependence, for an arbitrary scattering function, G

$$\int_{\Omega} G(\Omega) d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} G(\theta, \phi) \sin \theta d\theta d\phi = 2\pi \int_{0}^{\pi} G(\cos \theta) \sin \theta d\theta = 2\pi \int_{-1}^{1} G(\mu) d\mu$$

a convenient and useful substitution (which assumes, as is normally the case, that expansion in $\cos \theta$ is valid.).

Differential scattering event: $I \longrightarrow I - dI$ (just absorption and emission, k, for starters)

 $dI = -Id\tau + Bd\tau$, $\frac{-dI}{d\tau} = I - B$ Already in the basic *Schwarzschild* form of a radiative

transfer equation (The most basic Schwarzschild form is $\frac{-dI_v}{d\tau} = I_v - J_v$ or, expanding τ , $\frac{-dI_v}{k_v \rho ds} = I_v - J_v$). It is thus sometimes preferable to keep a dimension:

$$k_{\nu}\rho ds$$

$$\frac{-1}{\varepsilon}\frac{dI}{ds} = I - B$$
, so $d\tau = \varepsilon ds$

Scattering for layered atmospheres can be formulated with τ as the independent variable (usually) or *z* (or *P*) as the independent variable (sometimes).

 τ is easier mathematically but tougher when polychromatic (spectral) problems are addressed because $\tau = \tau(\sigma)$ but $z \neq z(\sigma)$. Also note, however, that when τ changes rapidly (like at a cloud top), using z or P may require extra effort (like creating very fine vertical layers).

Add scattering out of beam

$$dI = -I\varepsilon ds + Bkds + mI\Phi(\theta)ds \qquad \qquad \text{scattering source term} \\ = -I\varepsilon ds + B(\theta)\varepsilon(1-\omega)ds + I\varepsilon\omega\Phi(\theta)ds. \qquad \qquad (\text{Remember }\varepsilon = k + m.)$$

Writing $B(\theta)$ formally acknowledges that the blackbody emission has a phase function, even though it is isotropic. Combining source terms (*J* is the standard symbol for the source):

$$\varepsilon J \equiv \varepsilon [B(\theta)(1-\omega) + I\omega \Phi(\theta)].$$
 Then, $\frac{-1}{\varepsilon} \frac{dI}{ds} = I - J.$

We still need a more complex source (*e.g.*, I_0 might be a pencil beam source (LIDAR) or a parallel bundle, like I_{\odot} ; \odot = the Sun) and recast with $d\tau = \varepsilon ds$:

$$dI = -Id\tau + B(\Omega)(1-\omega)d\tau + \frac{\omega d\tau}{4\pi} \int d\Omega' \Big[I(\Omega')\Phi(\Omega',\Omega) \Big].$$
 function of relative θ
$$-\frac{dI}{d\tau} = I - B(1-\omega) - \frac{\omega}{4\pi} \int d\Omega' I(\Omega')\Phi(\Omega',\Omega) = I - J.$$

Stratified plane-parallel atmosphere

Goody and Yung 2.3.3; Chandrasekhar Chapters I and II

$$\boldsymbol{\mu} > \boldsymbol{0} \text{ (outward, upward)}$$
$$I^{+}(\tau, \mu) = I^{+}(\tau_{s}, \mu)e^{-(\tau_{1}-\tau)/\mu} + \int_{\tau_{s}}^{\tau} \frac{d\tau'}{\mu} J(\tau', \mu)e^{-(\tau'-\tau)/\mu}$$

$$\mu < 0$$
 (inward, downward) + because $\mu < 0$

$$I^{-}(\tau,\mu) = I^{-}(0,\mu)e^{+\tau/\mu} - \int_{0}^{\tau} \frac{d\tau'}{\mu} J(\tau',\mu)e^{+(\tau-\tau')/\mu}$$

Then, for fluxes (*e.g.*, radiative balance), integrate over $d\Omega$ (noting that the *BRDF* of the surface may introduce ϕ -dependence).

For solar radiation and negligible thermal source, calculate I^- and use albedo:

$$a_{\sigma} = \frac{F_{\sigma}^{+}}{F_{\sigma}^{-}}$$
 at surface (F = flux); then $J_{\sigma} = \frac{a_{\sigma}}{\pi} F_{\sigma}^{-}$ (surface).

Plane parallel, direction from boundary *inward* (or *downward*) See *Chandrasekhar* Chapters I and II for details

$$\mu \frac{dI}{d\tau} = I - J \quad \text{Note apparent sign} \quad \mu \uparrow \quad \downarrow \tau$$

change in radiative transfer equation since
 $\mu < 0$ for the downward direction.

Two-stream problem (up and down)

Simplest case: isotropic scattering $\Phi = 1$ (*Schuster and Schwartzchild*, from *Chandrasekhar*, leading to later discussions of *quadrature**)

$$dI(\tau,\mu) = \frac{I(\tau,\mu)d\tau}{\mu} - \frac{d\tau}{2\mu} \int_{-1}^{1} \omega I(\tau,\mu')d\mu' \text{ (the factor of \frac{1}{2} is from integrating over }$$

azimuth - 2π and dividing by the isotropic phase function - 4π), or

$$\mu \frac{dI(\tau,\mu)}{d\tau} = I(\tau,\mu) - \frac{\omega}{2} \int_{-1}^{1} I(\tau,\mu') d\mu'.$$

Then, defining I^+ and I^- from $sign(\mu)$,

$$+\frac{1}{2}\frac{dI^{+}}{d\tau} = I^{+} - \frac{\omega}{2}(I^{+} + I^{-})$$
$$-\frac{1}{2}\frac{dI^{-}}{d\tau} = I^{-} - \frac{\omega}{2}(I^{+} + I^{-})$$

The extra factors of 1/2 on the left come from averaging both extinction and source terms as $\int_0^{\pi} \sin\theta \cos\theta d\theta / \int_0^{\pi} \sin\theta d\theta = 1/2$ (the *mean obliquity of the rays*).

For conservative scattering ($\omega = 1$, Chandrasekhar, Section 20)

$$\frac{dI^+}{d\tau} = \frac{dI^-}{d\tau} = I^+ - I^-. \text{ More realistic: } \Phi \neq 1, \omega \neq 1.$$

*Gaussian quadrature "seeks to obtain the best numerical estimate of an integral by picking optimal abscissas at which to evaluate the function ..."

http://mathworld.wolfram.com/GaussianQuadrature.html

See Chandrasekhar Sections 20-22.