Spectrum (and other data) fitting

We normally fit by minimizing a cost function, usually χ^{2} :

$$
\chi^{2}=\sum_{i=1}^{n}\left[\frac{y_{i}-F\left(x_{i}, a_{1}, \cdots, a_{m}\right)}{\sigma_{i}}\right]^{2},
$$

where the a_{k} are parameters (m of them in total), y_{i} are measurements (e.g., the spectrum), x_{i} are values of independent variable (e.g. wavelength or wavenumber), and σ_{i} are the uncertainties $\left(1 / \sigma_{i}^{2}=\right.$ weight $)$.
Linear case: $F\left(x_{i}, a_{1}, \cdots, a_{m}\right)=\sum_{k=1}^{m} a_{k} X_{k}\left(x_{i}\right)$. The $X_{k}\left(x_{i}\right)$ are basis functions. They can be wildly nonlinear in x_{i} (like a spectrum usually is): only the a_{k} dependence is linear. They might be cross sections for different molecules, for example, making up a spectrum that is optically thin or that can be linearized using the Beer-Lambert condition. Then,
$\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{k}}=X_{k}\left(x_{i}\right), \quad(\bar{a}$ is the vector of the parameters $)$
$\chi^{2}=\sum_{i=1}^{n}\left[\frac{y_{i}-\sum_{k=1}^{m} a_{k} X_{k}\left(x_{i}\right)}{\sigma_{i}}\right]^{2}$
$b_{i} \equiv y_{i} / \sigma_{i}$ and $A_{i j} \equiv X_{j}\left(x_{i}\right) / \sigma_{i} \quad(m \times n$ matrix $)$, then $\chi^{2}=(\bar{b}-\underline{A} \bar{a})^{2}$.
at the minimum, $\frac{\partial \chi^{2}}{\partial a_{j}}=0, j=1, \cdots, m$
$\frac{\partial \chi^{2}}{\partial \bar{a}}=0=-2 \underline{A}^{T}(\bar{b}-\underline{A} \bar{a}), \quad\left(\underline{A}^{T} \underline{A}\right) \bar{a}=\underline{A}^{T} \bar{b} . T$ denotes the transpose of the matrix.
Our vector of parameters is thus $\bar{a}=\left(\underline{A}^{T} \underline{A}\right)^{-1} \underline{A}^{T} \bar{b}$.
$A^{T} A$ is usually called $\underline{\alpha}, \alpha_{k j}=\sum_{i} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{k}}$
$\underline{\alpha}=1 / 2$ of the Hessian matrix $\left(2^{\text {nd }}\right.$ derivatives of $\left.\chi^{2}\right)$
$\underline{\alpha}^{-1}=\left(A^{T} A\right)^{-1} \equiv \underline{C}$, the covariance matrix (of the standard errors). The uncertainty in each parameter is $\sigma\left(a_{j}\right)=\sqrt{c_{i j}} . \quad c_{j k}$ gives the covariance among parameters.
The correlation matrix $\equiv \frac{c_{i j}}{\sqrt{c_{i i} c_{j j}}}$.

Minimum χ^{2} gives a goodness of fit indicator, $\Gamma\left(\frac{n-m}{2}, \frac{\chi^{2}}{2}\right), 0 \leq \Gamma \leq 1 . \quad \Gamma$ is the probability that χ^{2} should exceed the fitted χ^{2} by chance (see Numerical Recipes for details). Rule of thumb: $\chi^{2} \sim n-m$ is good.

However, if the σ_{i} are not known or trusted and the model is known to be good, one may use $\sigma=R M S \sqrt{\frac{n}{n-m}}, \quad R M S=\left[\sum_{i=1}^{n} \frac{\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right)^{2}}{n}\right]^{1 / 2}$. If we do this, however, we cannot obtain an independent goodness of fit.

Forms of spectral noise, signal-to-noise ratio (\mathbf{S} / \mathbf{N})

Horowitz and Hill, Chapter 7 has valuable discussions of noise types and sources.

A Gaussian line,
$l_{\mathrm{g}}(\sigma)=\frac{\pi^{-1 / 2}}{b_{e}} \exp -\left[\frac{\left(\sigma-\sigma_{0}\right)^{2}}{b_{e}^{2}}\right], \int_{-\infty}^{\infty} l_{\mathrm{g}}(\sigma) d \sigma=1$.
where b_{e} is the half-width at 1/e intensity (hwl/e), to be compared later to the half-width
 at half maximum (HWHM) and the full-width at half maximum (FWHM). I prefer using hwl/e to describe Gaussians and HWHM for Lorentzian lineshapes (of which more later).

Gaussians widths add in quadrature (when convolving): $b_{\text {total }}=\sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}}$ (Easy to show with the convolution theorem - try it!)

Signal-to-noise-ratio, S/N

Signal: The signal of a system increases linearly with power. Antenna temperature, T_{A} : The signal (at a particular wavenumber, σ, or frequency, v) is equivalent to the antenna being enclosed in a blackbody of temperature $T . T_{A}$ of a line is usually defined for the line center.

Noise: We usually have (approximately) band-limited white Gaussian noise:

- Equal power per Hz (or cm^{-1} : a frequency unit)
- Gaussian distribution (\pm) of amplitudes

Measure at a given frequency:

Gaussian description of noise: For noise,
$\sigma_{0}=0, b_{n}=b_{e} / \sqrt{2}$
$b_{n}=$ root-mean-square (RMS) noise $=$ our noise for S / N purposes
Probability of amplitude $A, P_{A}=\frac{(2 \pi)^{-1 / 2}}{b_{n}} \exp -\left[\frac{A^{2}}{2 b_{n}{ }^{2}}\right]$
Noise integrates up as \sqrt{t} (because Gaussians add in quadrature), while signal integrates up as $t \Rightarrow \mathrm{~S} / \mathrm{N}$ increases as \sqrt{t}.

Types of noise:

1. Noise components from the instruments (detector noise, readout noise, electronic noise) will generally be independent of the spectral intensity. They are generally (to a reasonable degree of fidelity) described as Gaussian white noise. In radio physics and astronomy noise, squares of noise sources are often described as temperatures, which add linearly to give a noise system temperature: Remember that, in the RayleighJeans limit, power is linearly proportional to temperature. Since noise increases as $\sqrt{\text { power }}$, again because sources add in quadrature, noise temperature sources add linearly.
2. A component to the whole system noise that is due to photon statistics, that is, to the fact that we are counting a discrete number of photons, N, is also proportional to \sqrt{N} (proportional to \sqrt{t} for linear integration). The S / N is thus proportional to $N / \sqrt{N}=\sqrt{N}$. Where the spectrum is larger (say, at the peak of an emission line), the noise will be larger than at the trough, but the S / N signal will be lower. The margin of error (1 standard deviation, although almost never stated) usually given in political polls is $1 / \sqrt{N}$, where N is the number of persons polled. This can result in
less popular candidates having possibly negative approval ratings or likely voters! See where the problem arises?

The second noise source is described by Poisson statistics: Poisson statistics describes discrete events. From the Wikipedia:

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event. The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume ... The fluctuations about the mean value of events are denoted as Poisson noise or (particularly in electronics) as shot noise.

A good noise generation program is often very useful. noise.f90 is available at the class website. You may want to generate a noise spectrum with this program and test it to see how Gaussian the amplitude distribution is.

System temperature ($T_{s y s}$) and noise temperature (T_{N})

At low σ,
$R\left(\sigma_{0}\right)=\frac{2 \pi h c^{2} \sigma^{3}}{e^{c_{2} \sigma / T}-1} ; 2 \pi k T c \sigma^{2} \equiv$ Rayleigh-Jeans $(R J)$ limit.
$\left(2 \pi h c^{2}=3.74177118 \times 10^{-5} ; 2 \pi k c=2.6006643 \times 10^{-5}\right)$
$T_{s y s}$ and T_{N} are defined for 1 second integration time $\left(\propto T \times t^{-1 / 2}\right)$.

Nonlinear fitting

In general, fitting is nonlinear: $\chi^{2}=\sum_{i=1}^{n}\left[y_{i}-F\left(x_{i}, \bar{a}\right)\right]^{2}$ (suppress σ_{i} for now; it can always be re-introduced).
$\frac{\partial \chi^{2}}{\partial a_{j}}=-2 \sum_{i=1}^{n}\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right) \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}}=0, j=1, \cdots m$. If linear, $\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}}=X_{j}$. Otherwise, $\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}}$ may be calculated analytically sometimes (e.g., with some Hamiltonians in
spectroscopic analysis, and note LIDORT radiative transfer model, where Jacobian of the intensity field is determined analytically), but usually not.
For convenience, $\beta_{k} \equiv-\frac{1}{2} \frac{\partial \chi^{2}}{\partial a_{k}}=\sum_{i=1}^{n}\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right) \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{k}}$, and also (for later use)

$$
\frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}=2 \sum_{i}\left[\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{k}}-\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right) \frac{\partial^{2} F\left(x_{i}, \bar{a}\right)}{\partial a_{j} \partial a_{k}}\right]
$$

Note that we are going to discard the $2^{\text {nd }}$ order term before proceeding further. The justifications are that a solution involving first derivatives should be valid for fitting an arbitrary function near the χ^{2} minimum and that $y i-F\left(x_{i}, \bar{a}\right)$ should be near zero (or average to near zero) near the minimum, and should average out for a precise model, thus allowing us to avoid the necessity to calculate second derivatives (and also to avoid the instabilities they can generate if there are significant outliers or if the model does not precisely fit the data - see Numerical Recipes for details). Also, Bevington and Robinson note that it is "convenient to use a first order approximation for fitting nonlinear functions."
Then, $\frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}} \simeq 2 \sum_{i} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{k}}=$ the Hessian matrix
As before, $\alpha=\sum_{i} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{j}} \frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial a_{k}} \simeq \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}$.

Consider how χ^{2} will vary near the minimum for one of the set of parameters by expanding in a Taylor series about a point near the minimum:
$\chi^{2}=\chi_{0}^{2}+\frac{\partial \chi_{0}^{2}}{\partial a_{i}} \delta a_{i}+\frac{1}{2} \frac{\partial^{2} \chi_{0}^{2}}{\partial a_{i}^{2}} \delta a_{i}^{2}+\cdots$.
At the minimum, $\frac{\partial \chi^{2}}{\partial a_{i}}=0$, and thus χ^{2} is approximately a quadratic function in the parameter.

Now expand χ^{2} for all parameters in a
Taylor series about a starting point $\chi_{0}^{2}\left(=\chi^{2}\right.$ of the starting guess on parameters

This shows one dimension of the \boldsymbol{n}-dimensional minimization for $\boldsymbol{j}=1, \cdots, m$. $\bar{a})$:
$\chi^{2}=\chi_{0}^{2}+\sum_{j} \frac{\partial \chi_{0}^{2}}{\partial a_{j}} \delta a_{j}+\frac{1}{2} \sum_{k} \sum_{j} \frac{\partial^{2} \chi_{0}^{2}}{\partial a_{k} \partial a_{j}} \delta a_{j} \delta a_{k}+\cdots$.
At the minimum, the first derivatives are zero:

$$
\frac{\partial \chi^{2}}{\partial\left(\delta a_{k}\right)}=\frac{\partial \chi_{0}^{2}}{\partial a_{k}}+\sum_{j} \frac{\partial^{2} \chi_{0}^{2}}{\partial a_{k} \partial a_{j}} \delta a_{j}=0, k=1, \cdots m
$$

This is now analogous to our linear problem of before, now linearized in $\delta \bar{a}$:
$\bar{\beta}=\delta \bar{a} \underline{\alpha}, \quad \delta \bar{a}=\bar{\beta} \underline{\alpha}^{-1} .\left(\right.$ really $\left.\beta_{0}, \alpha_{0}\right)$
Again, $\underline{C}=\underline{\alpha}^{-1}=\left[\frac{\partial^{2} \chi}{\partial a_{k} \partial a_{j}}\right]^{-1}$ (covariance of the standard errors, inverse of the Hessian of χ^{2}), the correlation matrix is $c_{i j} / \sqrt{c_{i i} c_{j j}}$ as before and the uncertainties of the parameters are given as $\sigma\left(\delta a_{j}\right)=\sqrt{c_{i j}}$, but with some caveats (cf. Numerical Recipes), including the correlation among parameters, and departures from assumptions of normally-distributed (Gaussian) errors.

Aside on correlated parameters

The correlation matrix describes how entangled parameters are. Even with a "perfect" model, the fact that the measurements have noise will cause parameters to be correlated, particularly when they are physically related (e.g., for O_{3} versus height). Negative correlation (the most common type) means that an increase in parameter a_{i} will be partially offset by a decrease in parameter a_{j}.

Consider a case where atmospheric ozone measurements are fitted to a model with 11 layers, 3 in the troposphere (1-3) and 8 in the stratosphere (4-11). If a_{i} and a_{j} are adjacent parameters (or even if they are not adjacent) denoting ozone amounts, with uncertainties σ_{i} and σ_{j}, then $a_{i}+a_{j}$ has uncertainty $\sigma_{i+j}=\left[\sigma_{i}^{2}+\sigma_{j}^{2}+2 \operatorname{cor}_{i j} \sigma_{i} \sigma_{j}\right]^{1 / 2}$, where $\operatorname{cor}_{i j}$ is the off-diagonal term of the (symmetric) correlation matrix. cor $_{i j}$ would normally be negative, so that the uncertainty for the sum of the ozone in the two layers would be less than the RSS of the corresponding layer uncertainties. To put it more simply, in terms of the covariance matrix, $\sigma_{i+j}=\left[c_{i i}+c_{j j}+2 c_{i j}\right]^{1 / 2}$.

The uncertainty for the tropospheric ozone is

$$
\sigma_{\text {trop }}=\left[\sum_{i=1}^{n} \sigma_{i}^{2}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{cor}_{i j} \sigma_{i} \sigma_{j}\right]^{1 / 2}, n=3
$$

The uncertainty for the stratospheric ozone is

$$
\sigma_{\text {strat }}=\left[\sum_{i=4}^{n} \sigma_{i}^{2}+\sum_{i=4}^{n-1} \sum_{j=i+1}^{n} \operatorname{cor}_{i j} \sigma_{i} \sigma_{j}\right]^{1 / 2}, n=11 .
$$

The uncertainty for the total ozone is

$$
\sigma_{\text {total }}=\left[\sum_{i=1}^{n} \sigma_{i}^{2}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{cor}_{i j} \sigma_{i} \sigma_{j}\right]^{1 / 2}, n=11
$$

Back to fitting: We showed a case where we started close enough to the multidimensional minimum to solve by a linear expansion. We would be done except for the pesky problem of finding the minimum efficiently. Numerous methods, such as grid searches, etc., exist for doing so. For many nonlinear problems the Levenberg-Marquardt method is a standard and generally useful approach. It provides an elegant way to approach the solution (the minimum) quickly when the starting guess is far away and gently when the minimum is being approached.

The Levenberg-Marquardt method

If we are far from the solution we want to travel in the direction opposite the gradient (i.e., in the direction of the steepest descent). When we get near, we would like to switch over to moving along the curvature (as above), linearizing the solution.
Gradient search: The gradient vector is $\nabla \chi^{2}=\sum_{j=1}^{n} \frac{\partial \chi^{2}}{\partial a_{j}} \hat{a}_{j}, \quad \hat{a}_{j}=$ a unit vector in the direction of a_{j}. Take a step in the direction of steepest descent, i.e., $-\nabla \chi^{2}$, then recalculate the gradient (perhaps using the Hessian to do so).
Remember $\beta_{k}=-\frac{1}{2} \frac{\partial \chi^{2}}{\partial a_{k}}$, so that $\delta a_{k}($ the step $)=$ constant $\times \beta_{k}$. But what is the constant? How do we choose it? This is the clever part of the Levenberg-Marquardt method: β_{k} has dimension $1 / a_{k}$, so the constant must have dimension a_{k}^{2}. So far, only
$1 / \alpha_{k k}$ has dimension a_{k}^{2}. So, choose a step $\delta a_{k}=\frac{\beta_{k}}{\lambda \alpha_{k k}}$, or $\beta_{k}=\lambda \alpha_{k k} \delta a_{k} . \lambda$ is an adjustable parameter introduced to modulate the $\alpha_{k k}$ scale. The following change, employing an adjustable λ, allows us to vary continuously between a gradient search (steepest descent) and a linearized solution as the minimum is approached:
Instead of $\bar{\beta}=\delta \bar{a} \underline{\alpha}$, choose $\bar{\beta}=\delta \bar{a} \underline{\alpha}^{\prime}$, where $\alpha_{j k}^{\prime}= \begin{cases}\alpha_{j k}(1+\lambda), & j=k \\ \alpha_{j k}, & j \neq k\end{cases}$
Large $\lambda \Rightarrow$ steepest descent ($\underline{\alpha}$ is diagonally dominant)
Small $\lambda \Rightarrow$ linearized (Newton's method)

The recipe: Start with $\lambda=0.001$ (for historical reasons) and starting parameters \bar{a}.

1. Compute $\chi^{2}(\bar{a})$
```
c2. \(\delta \bar{a}=\beta\left(\bar{\alpha}^{\prime}\right)^{-1}\), compute \(\chi^{2}(a+\delta a)\)
    3. If \(\chi^{2}(a+\delta a)>\chi^{2}(a) \Rightarrow \lambda=\lambda \times 10\)
        If \(\chi^{2}(a+\delta a)<\chi^{2}(a) \Rightarrow \lambda=\lambda / 10, a=a+\delta a\)
```

Convergence:

1. Preset minimum in χ^{2} (sometimes referred to as the "only" way)
2. Relative change in all parameters $<$ preset
3. Maximum iterations

After convergence, set $\lambda=0$ and calculate $\underline{C}=\underline{\alpha}^{-1}$.
A very nice version of a similar method, with lots of bells and whistles comes from CERN: elsunc.lc, elsunc.f90 (available on the website).

Caveats: There can be local minima that confuse the solution and broad minima that make convergence slow. There are cases when parameters may be close to degenerate (as in the ozone case mentioned above) where parameters are strongly correlated and where the interplay among parameters slows conversion.

More on retrieval theory

Optimal estimation (and much other retrieval theory, see C. Rodgers references for details) is often derived in terms of:

Weighting functions

$K_{i j}=\frac{\partial F_{i}}{\partial a_{j}}$
The $K_{i j}$ give a broad idea of information content. They show the part of the atmospheric profile (e.g.) that is represented by each measurement. Remember that
$\chi^{2}=\sum_{i}\left(y_{i}-F\left(x_{i}\right)\right)^{2}$,
$F\left(x_{i}\right)=\sum_{k=1}^{m} a_{k} X_{k}(i)$ (in the linear case). Then, $K_{i j}=X_{j}(i)$.
Example: SBUV weighting functions

- 10 spectral bands (albedo)
- 1 total ozone construct

Contribution functions

$\underline{D}_{y}=\frac{\partial \hat{a}}{\partial \bar{y}} ; \quad \underline{D}_{a}=\frac{\partial \hat{a}}{\partial \bar{a}^{0}} \quad \hat{a} \equiv$ final parameters; $\bar{a}^{0}:$ a priori parameters
These are sensitivities of the solution vector \hat{a} to the measurements (y) and the a priori information $\left(\bar{a}^{0}\right)$. They are normally calculated after the solution, to provide a diagnostic.

Averaging kernels

$\underline{A}=\underline{D}_{y} \underline{K}=\frac{\partial \hat{a}}{d y} \frac{\partial F}{\partial a}=\frac{\partial \hat{a}}{\partial a}$, the way the solution changes, given changes in the atmosphere.
"Each channel contributes in a complicated way to the overall retrieval."

Gives an estimate of the vertical resolution in the case of SBUV retrievals, for example.
Compare with a δ-function or "bump" analysis.
Often (as in the case of several instruments on the NASA EOS satellites) it has become common to use Twomey-Tikhonov/Phillips-Tikhonov regularization and do Optimal Estimation-type diagnostics at the end, i.e., \underline{D}_{y} and \underline{A} at the linearization point.

Why constrain the solution? (i.e., why do regularization?) Measurement noise may easily be amplified in the retrieval process - especially in the inversion of the $\underline{\alpha}$ (curvature) matrix:

$$
\begin{aligned}
\bar{a}=\left(\underline{A}^{T} \underline{A}\right)^{-1} \underline{A}^{T} \bar{b} & A_{i j}=X_{j}\left(x_{i}\right) / \sigma_{i} \\
& b_{i}=y_{i} / \sigma_{i}
\end{aligned} \text { at the linearization point. }
$$

Twomey-Tikhonov regularization
The linear solution from before was $\bar{a}=\left(\underline{A}^{T} \underline{A}\right)^{-1} \underline{A}^{T} \bar{b}$.
It can be smoothed by $\bar{a}=\left(\underline{A}^{T} \underline{A}+\gamma \underline{H}\right)^{-1} \underline{A}^{T} \bar{b} . \gamma$ is an adjustable parameter, \underline{H} is a square matrix (e.g., $\underline{H}=\underline{I}$). The purpose of introducing this smoothing contribution is to decrease noise sensitivity. Common choices:
Squared $1^{\text {st }}$ differences, $\left(f_{n+1}-f_{n}\right)^{2}$, is accomplished by
$\underline{H}=\left[\begin{array}{ccccccccc}1 & -1 & & & & & & & \\ -1 & 2 & -1 & & & & & & \\ & -1 & 2 & \mathrm{~g} & & & & & \\ & & \mathrm{~g} & \mathrm{~g} & \mathrm{~g} & & & & \\ & & & \mathrm{~g} & \mathrm{~g} & \mathrm{~g} & & & \\ & & & & \mathrm{~g} & \mathrm{~g} & \mathrm{~g} & & \\ & & & & & \mathrm{~g} & 2 & -1 & \\ & & & & & & -1 & 2 & -1 \\ & & & & & & & -1 & 1\end{array}\right]$.
This will smooth out differences in \bar{a} (zig-zagging of solution).
Squared $2^{\text {nd }}$ differences, $\left(\Delta^{2} f_{n}\right)^{2}=\left(f_{n+2}-2 f_{n+1}+f_{n}\right)^{2}$ is accomplished by
$\underline{H}=\left[\begin{array}{ccccccccc}1 & -2 & 1 & & & & & & \\ -2 & 5 & -4 & 1 & & & & & \\ 1 & -4 & 6 & \mathrm{~g} & & & & & \\ & 1 & \mathrm{~g} & \mathrm{~g} & \mathrm{~g} & & & & \\ & & & \mathrm{~g} & \mathrm{~g} & \mathrm{~g} & & & \\ & & & & \mathrm{~g} & \mathrm{~g} & \mathrm{~g} & 1 & \\ & & & & & \mathrm{~g} & 6 & -4 & 1 \\ & & & & & 1 & -4 & 5 & -2 \\ & & & & & & 1 & -2 & 1\end{array}\right]$.
This smoothes " 2 nd derivatives" in the solution vector.

Outline of several other important methods

First, develop the matrix version of the cost function
$\chi^{2}=\sum_{i}\left[\frac{y_{i}-F\left(x_{i}, \bar{a}\right)}{\sigma_{i}}\right]^{2}=\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right)^{T} \underline{S}_{y}^{-1}\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right)$.
\underline{S}_{y} is the measurement error covariance matrix, $\underline{S}_{y}(i, j)=\sigma_{i} \sigma_{j}, \sigma_{i} \sigma_{j}=0, i \neq j$ for uncorrelated uncertainties, a common assumption for measurements.

$$
\frac{\partial \chi^{2}}{\partial \bar{a}}=0=-2\left[\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial \bar{a}}\right]^{T} \underline{S}_{y}^{-1}\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right) .
$$

Optimal Estimation solution

$\left[\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial \bar{a}}\right]^{T} \underline{S}_{y}^{-1}\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right)=0 \Rightarrow\left[\frac{\partial F\left(x_{i}, \bar{a}\right)}{\partial \bar{a}}\right]^{T} \underline{S}_{y}^{-1}\left(y_{i}-F\left(x_{i}, \bar{a}\right)\right)+\underline{S}_{a}^{-1}\left(\bar{a}-\bar{a}^{0}\right)=0$.
We have added a vector of a priori parameters \bar{a}^{0} and their covariance \underline{S}_{a}^{-1}. Then, if there is no correlation among a priori values (index j) or measurements (index i), the covariance matrices are diagonal and
$\chi^{2}=\sum_{j}\left(\frac{\bar{a}_{j}-\bar{a}_{j}^{0}}{\sigma_{j}}\right)^{2}+\sum_{i}\left(\frac{y_{i}-F\left(x_{i}, \bar{a}\right)}{\sigma_{i}}\right)^{2}$. However, there usually is correlation. The a priori values are treated as data. They act to constrain the solution based upon what we know about the problem, e.g. ozone values from a climatology. The trick is to estimate \underline{S}_{a}, which is to say, how confident are we about how well we know the a priori so that it can be appropriately weighted in the solution. A typical form for \underline{S}_{a} is
$S_{a}(i, i)=\sigma_{a}^{2}(i) ; S_{a}(i, j)=\sigma_{a}(i) \sigma_{a}(j) \exp -\left[\frac{z_{i}-z_{j}}{h}\right]^{2}, i \neq j, h$ is the correlation length.

Then, proceed to develop about a linearization point - if the problem is nonlinear, estimate and then re-linearize as before. Upon taking a step in parameter space, say from \bar{a}_{k} to \bar{a}_{k+1}, χ^{2} is re-evaluated as $\chi^{2}=\left\|\underline{S}_{a}^{-1 / 2}\left(\bar{a}_{k+1}-\bar{a}^{0}\right)\right\|_{2}^{2}+\left\|\underline{S}_{y}^{-1 / 2}\left\{\underline{K}_{k}\left(\bar{a}_{k+1}-\bar{a}_{k}\right)-\left[\bar{y}-\bar{F}\left(\bar{x}, \bar{a}_{k}\right)\right]\right\}\right\|_{2}^{2}$, where the notation implies summing the squares of the diagonal elements. Upon convergence, the solution has covariance $\underline{C}=\left(\underline{S}_{a}^{-1}+K^{T} S_{y}^{-1} K\right)^{-1}$, and $\chi^{2}=\left\|\underline{S}_{a}^{-1 / 2}\left(\bar{a}-\bar{a}^{0}\right)\right\|_{2}^{2}+\left\|\underline{S}_{y}^{-1 / 2}[\bar{y}-\bar{F}(\bar{x}, \bar{a})]\right\|_{2}^{2}$.

In more standard notation, for a step in parameter space
$\chi^{2}=\left\|\mathbf{S}_{\mathbf{a}}^{-1 / 2}\left(\mathbf{a}_{\mathbf{k}+1}-\mathbf{a}_{0}\right)\right\|_{2}^{2}+\| \mathbf{S}_{\mathbf{y}}^{-1 / 2}\left\{\mathbf{K}_{\mathbf{k}}\left(\mathbf{a}_{\mathbf{k}+1}-\mathbf{a}_{\mathbf{k}}\right)-\left[\mathbf{Y}-\mathbf{F}\left(\mathbf{a}_{\mathbf{k}}\right)\right] \|_{2}^{2}\right.$, and, upon convergence, the solution has covariance $\mathbf{C}=\left(\mathbf{S}_{\mathrm{a}}^{-1}+\mathbf{K}^{\mathbf{T}} \mathbf{S}_{\mathbf{y}}^{-1} \mathbf{K}\right)^{-1}$, and $\chi^{2}=\left\|\mathbf{S}_{\mathbf{a}}^{-1 / 2}\left(\mathbf{a}-\mathbf{a}_{\mathbf{0}}\right)\right\|_{2}^{2}+\left\|\mathbf{S}_{\mathbf{y}}^{-1 / 2}[\mathbf{Y}-\mathbf{F}(\mathbf{a})]\right\|_{2}^{2}$.

Other methods: Onion-peeling, global fitting - for limb.

