MEASURING TRACE GAS PROFILES FROM SPACE

Caroline Nowlan Atomic and Molecular Physics Division Harvard-Smithsonian Center for Astrophysics

Collaborators: Kelly Chance, Xiong Liu, Gonzalo Gonzalez Abad, Zhaonan Cai, Jay Kar, Kaley Walker, Chris Sioris

EPS 238, Harvard University 10 April 2014

Profiling the Atmosphere

- Active
 - LIDAR
 - RADAR
- Passive
 - Occultation
 - Nadir backscatter
 - Nadir thermal emission (IASI, TES)
 - Limb scattering (OSIRIS, SCIAMACHY)
 - Limb thermal emission (MIPAS)

Profiling the Atmosphere

- Active
 - LIDAR
 - RADAR
- Passive
 - Occultation
 - Nadir backscatter
 - Nadir thermal emission (IASI, TES)
 - Limb scattering (OSIRIS, SCIAMACHY)
 - Limb thermal emission (MIPAS)

Passive Measurement Geometries

C. Limb Emission

D. Limb Scattering

Nadir Backscatter Instruments

Instrument	Dates	Profiles retrieved from nadir?
TOMS	1978 – 2006	
GOME	1995 – 2011	O ₃ (Liu et al., 2005)
SCIAMACHY	2002 – 2012	
OMI	2004 —	O ₃ (Liu et al., 2010) SO ₂ (Yang et al., 2010)
GOME-2A GOME-2B GOME-2C	2006 – 2012 – 2017 –	O ₃ (Cai et al., 2012) SO ₂ (Nowlan et al., 2011)
OMPS	2011 –	
TROPOMI	2015 —	
Sentinel-4	2017 —	
TEMPO	2018 –	
GEMS	2018 –	

Remote Sounding: Inverse Problem

$$\mathbf{y} = \mathbf{F}(\mathbf{x}) + \boldsymbol{\varepsilon}$$

- We have y (spectral data)
- We want **x** (profile & other fitted parameters)
- Requirements for inversion
 - Forward model (F)
 - Retrieval algorithm

Nadir Backscatter

- Global coverage
- Limited altitude information, and only for certain molecules (Ozone, volcanic SO₂)
- Almost always need a priori information on state of atmosphere (i.e., ozone profile climatology)
- Altitude information on ozone and SO₂ has so far been derived from OMI, GOME, and GOME-2 using the UV

Optimal Estimation Approach

- Combine a priori knowledge with measurements
- Iterate until convergence

$$\Delta \mathbf{x} = (\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} [\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \Delta \mathbf{y} - \mathbf{S}_{a}^{-1} (\mathbf{x} - \mathbf{x}_{a})]$$

- **x** = current guess of retrieved parameter
- **y** = measurements
- \mathbf{S}_{ϵ} = measurement error covariance matrix
- $\mathbf{K} = \mathbf{dy}/\mathbf{dx}$
- \mathbf{x}_{a} = a priori profile (climatology or from a model)
- \mathbf{S}_{a} = a priori error covariance matrix

Optical Depths for Typical GOME Measurement Geometry

K. Chance, CfA

GOME-2 Spectra, Channel 2

GOME-2 Ozone Profile (Backscatter)

(Z. Cai, Chinese Academy of Sciences)

OMI Tropospheric Ozone

X. Liu (CfA)

GOME-2 and OMI SO₂

Mt. Kasatochi Alaska 9 August 2008

SO₂ Vertical Column

GOME-2

OMI

Occultation Measurements

- Self-calibrating
- High vertical resolution
- Sparse global coverage

Occultation Instruments

Instrument	Dates	Spectral Region	Source
ATMOS (shuttle)	1985 – 1994	infrared	Sun
HALOE	1991 – 2005	NIR, infrared	Sun
SAGE I SAGE II SAGE III SAGE III ISS	1979 - 1981 1984 - 2005 2001 - 2005 2015 -	UV, visible, NIR	Sun
GPS technique	1995 —	radio	GPS
ILAS ILAS II	1996 – 1997 2002 – 2003	NIR, infrared	Sun
SCIAMACHY	2002 – 2012	UV – infrared	Sun and moon
GOMOS	2002 – 2012	UV, visible, NIR	Stars
ACE-FTS	2003 —	infrared	Sun
ACE-MAESTRO	2003 –	visible, NIR	Sun

Atmospheric Chemistry Experiment

- ACE is on SCISAT satellite
- Launched August 12, 2003
- Two primary instruments on-board
 - ACE-FTS (Fourier Transform Spectrometer)
 - → INFRARED
 - ACE-MAESTRO
 - → VISIBLE-NIR
- ACE-FTS measures:
 - H_2O , O_3 , N_2O , NO, NO_2 , HNO_3 , N_2O_5 , H_2O_2 , HO_2NO_2 , N_2 , HCI, HF, CIONO₂, CFC-11, CFC-12, CFC-113, COF₂, COCI₂, COFCI, CF₄, SF₆, CH₃CI, CCI₄, HCFC-22, HCFC-141b, HCFC-142b, CO, CH₄, CH₃OH, H₂CO, HCOOH, C₂H₂, C₂H₄, C₂H₆, OCS, HCN, CIO, acetone, PAN, aerosols

Solar Occultation Measurements

ACE Occultation Coverage: 2004

SUNSET

Kar et al., 2007

MAESTRO Optical Depth Spectra

Occultation Retrievals

- Traditional method: "onion peeling"
- Newer approach: global fitting
 - Simultaneous fitting of every spectrum in an occultation
 - Arrange all spectra into one giant measurement vector

$$\Delta \mathbf{x} = (\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} [\mathbf{K}^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} \Delta y - \mathbf{S}_{a}^{-1} (\mathbf{x} - \mathbf{x}_{a})]$$

- **x** = current guess of retrieved parameter
- **y** = measurements
- \mathbf{S}_{ε} = measurement error covariance matrix
- $\mathbf{K} = \mathbf{dy}/\mathbf{dx}$
- \mathbf{x}_{a} = a priori profile (climatology or from a model)
- \mathbf{S}_{a} = a priori error covariance matrix

ACE-MAESTRO: Ozone Profiles

ACE-MAESTRO: Mt. Kasatochi Aerosols

Sioris et al., JGR, 2010

Density Averaging Kernels from O₂ Bands

ACE-FTS Spectra

ACE-FTS CO₂ line (near 61 km)

K. Walker, U of Toronto

ACE-FTS: Canadian Biomass Burning

Halogen-containing Species Trends

A. Brown et al., JQSRT, 112, 2552-2566 (2011)

Distribution of COCIF

- Carbonyl chlorofluoride is a product of chlorofluorocarbon (CFC-11 mainly) decomposition
- Previously studied 35
 by aircraft instruments (5 12⁹)
 km)
- First global picture obtained from ACE-FTS

D. Fu et al., JQSRT, 110, 974-985 (2009)

Exoplanet atmospheres from occultation?

LETTERS

The presence of methane in the atmosphere of an extrasolar planet

Mark R. Swain¹*, Gautam Vasisht¹* & Giovanna Tinetti²*

The End