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Abstract

Astrophysical dust plays a major role in stellar formation and
evolution, and in the chemical enrichment of the Galaxy. How-
ever, the processes which lead to its formation in the circumstel-
lar environment of evolved stars, and describe its interactions
with the Interstellar Medium, are largely unknown. Mid-IR ob-
servations, combined with radiative transfer modeling aimed to
derive the dust physical parameters from its thermal emission,
are our best tool to investigate the physics of dust in many as-
trophysical contexts.

In this thesis, I first analyze the current status of mid-IR ob-
servations of circumstellar envelopes around Asymptotic Giant
Branch (AGB) stars. I then propose a new set of tools, based
on the photometric system available in mid-IR imaging cameras,
aimed to derive the chemical and evolutionary status of the en-
velopes from their mid-IR colors. A large sample of sources,
observed in the IR and radio, is used to test the effectiveness
of the proposed tools, and to derive the correlations between
mid-IR colors and mass loss rates in the AGB.

Next, I explore the connections between the pulsational char-
acteristics of Long Period Variables of Mira, Semiregular and
Irregular type, with the temporal modulation of their mass loss
rates. The mid-IR emission of a large sample of AGB variables is
studied, with the aid of spherically symmetric radiative transfer
models of circumstellar dust in local thermodynamical equilib-
rium. This technique allows to analyze the thermal structure of
the envelopes, and the timescales of their dust production. A
deficiency of hot dust in the majority of Semiregular variables is
found, suggesting the frequent occurrence of circumstellar dust
shell detachment in these sources, and a different efficiency of
the mass loss processes between the Mira and the Semiregular
class.

I then study a sample of 46 AGB and post-AGB sources,
by analyzing the images I have collected with several mid-IR
cameras. The photometry of the envelopes is used to determine
their chemical and evolutionary status. The spatial distribution



viii

of the dust and the envelope symmetry is measured from the
collected data. These observations show how sub-arcsecond res-
olution can be obtained with ground-based mid-IR imaging, by
using a special technique here described.

MIRAC images of the Young Stellar Object AFGL 2591 at
11.7, 12.5 and 18.0 µm are also presented. I discuss the discovery
of a previously unknown dust ejection episode, associated to the
molecular outflow of the source. By measuring the photometry
of the object, the total mass of the ejection (∼0.1 M¯) is derived.

Finally, I present a new numerical code, able to compute
the stochastic temperature distribution of dust surviving in a
hot astrophysical plasma. Applications of this code, which has
been parallelized to increase the computational efficiency with
multi-processor computer clusters, are discussed. A particular
emphasis is given on dust in the intracluster medium of cluster
of galaxies, and the consequences of its dust emission on the
Sunyaev-Zel’dovich effect.
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