
Chapter 2

Theoretical basis: dust,
radiation and matter
interactions

This chapter introduces the basic theoretical tools used in this thesis work.
The propagation of radiation in a dusty medium is described in sec-

tion 2.1. The formal solution of radiative transfer problem in presence of
dust is given, and applied to the case of dusty circumstellar envelopes. The
methods developed in this section are then used in the following chapters to
model the circumstellar environment of AGB stars.

Section 2.2 introduces the physics of interactions between dust matter
and radiation. The optical properties of dust minerals are summarized,
and discussed in term of the “opacities” characterizing astrophysical dust.
These opacities are a basic component to compute the spectral properties
of radiation emitted and absorbed by dust.

The last section finally examines the interactions between dust and other
particles, namely the positive ions an the electrons of a plasma in which dust
grains can be embedded. The survival of dust in this conditions is analyzed,
and the effects of the dust-particles interactions are described from the point
of view of the grain thermodynamics. The basic equations shown in this
section are then used to study the behaviour of dust in the ICM.

2.1 Radiative transfer in a dusty medium

With the exceptions of refractory grains in meteorites, the only observables
for the study of cosmic dust are in most cases the bolometric flux and the
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spectral flux distribution coming from the dust medium. In these cases the
solution of a radiative transfer problem is necessary to connect the observa-
tions with the physical and thermodynamical status of the dust.

In this section the general equation of radiative transfer is introduced,
and discussed in the case of a dusty medium. The condition of local ther-
modynamical equilibrium, in which the dust radiative emission balances the
energy input from all heating sources, is introduced, and a solution method
for the problem in a spherically symmetric geometry is given.

The case of spherical symmetry and thermal equilibrium is the typical
approximation used to describe dusty circumstellar envelopes, in which the
only heating source is the radiation field generated from the central star. A
more general problem, in which the interactions between dust and matter
give a substantial contribution to the energy balance, and the thermody-
namical equilibrium does not apply due to different timescales between the
heating and cooling processes, is discussed separately in section 2.3.4.

2.1.1 Spectral intensities and flux units

The spectral intensity Iν of a radiation field is defined as the amount of
energy dE in the frequency beam dν that, coming from the solid angle dΩ,
crosses the surface dA in the time dt:

Iν =
dE

dν dt dΩdA
(2.1)

The integral over the solid angle of the normal component of the inten-
sity Iν with respect to the collecting area is called spectral flux , and is the
quantity measured by astronomical detectors:

Fν =
∫

4π
Iν cos θ dΩ (2.2)

The bolometric flux is instead defined as the total collected flux over all
frequencies, and is thus related to Fν by the integral:

Fbol =
∫ ∞

0
Fν dν (2.3)

Spectral fluxes are measured in units of erg cm−2 s−1 Hz−1. A commonly
adopted unit, called Jansky, is defined as:

1 Jy = 10−23 erg cm−2 s−1 Hz−1 (2.4)
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Fluxes are also expressed in magnitudes, which is a logarithmic scale
unit based on the zero point flux of the standard star α Lyr:

m = −2.5 log
(

Fν

Fν,0

)
(2.5)

This system, which imitates the way the human retina perceives lumi-
nous fluxes, was introduced by Hipparcos in 120 B.C., and is still widely
used.

To compute the flux emitted by a dust cloud, one has to solve the problem
of how electromagnetic radiation propagated in the dusty medium. This is
done by the “radiative transfer equation”, described in the following section.

2.1.2 The general equation of radiative transfer

Barionic matter and electromagnetic radiation interacts in three basic forms:
absorption, scattering, and emission.

Consider a volume of material with cross section dA and length d`, which
is illuminated by a radiation field of intensity Iν . In case of absorption, an
amount dE(a) of energy is removed from the incident flux, and converted
into internal energy of the absorbing material. The amount of energy that
is absorbed is proportional to the intensity Iν , and the constant of propor-
tionality is called absorption opacity k

(a)
ν :

dE(a) = k(a)
ν Iν dν dtdΩ dAd` (2.6)

In the case of scattering, the fraction of incident radiation that is removed
is immediately reflected in the same wavelength bin but at different solid
angle. The scattered radiation is also proportional to Iν , and the constant
of proportionality is called scattering opacity k

(σ)
ν :

dE(σ) = k(σ)
ν Iν dν dtdΩdA d` (2.7)

In the case of emission, the material releases into the radiation field an
energy dE(ε), proportional to a quantity jν , called emissivity . The emitted
energy is not necessarily proportional to the intensity Iν , but rather depends
on the physical characteristics of the emitting material, and its energetic
state:

dE(ε) = jν dν dt dΩdA d` (2.8)
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For the conservation of energy, the total variation of the incident flux in
the solid angle dΩ is given by the difference between the emitted, absorbed
and scattered energy:

dIν =
dE(ε) − dE(a) − dE(σ)

dν dt dΩdA
(2.9)

which gives the general equation of radiative transfer :

dIν

d`
= jν − kν Iν (2.10)

In this equation kν = k
(a)
ν + k

(σ)
ν is the total opacity, that describes the

interactions between radiation and matter at a microscopic level.By defining
the source function Sν as the ratio between the emissivity and the total
opacity, one can rewrite the radiative transfer equation in the more usual
form:

dIν

d`
= kν (Sν − Iν) (2.11)

The source function describes the interactions between matter and radi-
ation at a macroscopic level; its general form for a dusty medium is given in
the next section.

2.1.3 The source function for a dusty medium

The radiative transfer equation is more properly expressed in terms of a non
dimensional quantity, called optical depth which is proportional to the total
opacity integrated along an optical path P:

dτν = kν d` ⇒ τν =
∫

P
kν d` (2.12)

By introducing the optical depth, the only term in the equation 2.11
which depends on the properties of the interacting matter is the source
function Sν :

dIν

dτν
= Sν − Iν (2.13)

With this change of variable, the radiative transfer equation can be for-
mally solved in terms of the optical depth:
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Iν(P) = Iν(0) e−τν(P)

︸ ︷︷ ︸
background component

+
∫

Sν(τ ′ν) e−[τ ′ν−τν(P)] dτ ′ν
︸ ︷︷ ︸

source component

(2.14)

where the background component gives the amount of incident radiation
extincted along the path P, and the source component is the contribution
to Iν given by the emission and scattering of the interacting matter.

For a dusty medium, the source component can be split in two separate
contributions, one relative to the dust emission, and one giving the total
dust scattering:

Sν =
jν

kν
=

j
(ε)
ν + j

(σ)
ν

k
(a)
ν + k

(σ)
ν

(2.15)

If Td is the dust temperature (generally a function of the heating sources,
among which the radiation field itself), then the emission component is equal
to the black body emission Bν(Td), multiplied by the efficiency factor given
by the absorption opacity kν :

j(ε)
ν = k(a)

ν Bν(Td) (2.16)

The scattering component, on the other end, is obtained by integrating
the scattered radiation over the total solid angle:

j(σ)
ν =

1
4π

∫

4π
k(σ)

ν Iν(Ω′) g(Ω′,Ω) dΩ′ (2.17)

where g(Ω′,Ω) is the angular phase function for coherent scattering from
direction Ω′ to direction Ω (see e.g. Mihalas, 1978).

By introducing the albedo $ν = k
(σ)
ν /kν , the formal expression of the

source function for a dusty medium becomes:

Sν = (1−$ν) Bν(Td) +
$ν

4π

∫

4π
Iν(Ω′) g(Ω′,Ω) dΩ′ (2.18)

By substituting equation 2.18 in equation 2.13 the radiative transfer
problem can in principle be solved, once the thermal structure of the dust is
determined. In the next section this problem is discussed, in the simplified
case in which dust and radiation are thermalized.
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2.1.4 Dust in local thermodynamical equilibrium

The thermal state of a single dust grain is defined by the balance between its
heating and cooling sources. In general, these two processes can have very
different timescales, τheat and τcool. If τcool ¿ τheat, the temperature of the
grain is subjected to fluctuation in time. In this case a common temperature
for the dust cannot be defined, since each grain, at any given moment in time,
may have a different temperature. In this situation, common for dust in a
hot plasma (like dust in the ICM or SN remnants), a statistical distribution
of dust temperature have to be used.

If τcool ∼ τheat, the grains in the cloud can reach an equilibrium temper-
ature Td, which is described by the balance between emitted and absorbed
radiation. In this case, the dust is said to be in local thermodynamical equi-
librium, or LTE. This equilibrium is described by the following equation, in
which the left hand side is the total flux irradiated on all solid angles, and
the right hand side is the total absorbed flux:

∫
dΩ

∫
kν Sν dν = 4π

∫
kν Jν dν (2.19)

where Jν is the average flux intensity over all solid angles:

Jν =
1
4π

∫
Iν dΩ (2.20)

In the hypothesis in which radiative cooling is the only active process, the
source function in equation 2.18 can be used to describe the LTE condition
of a dust grain:

∫
dΩ

∫
kν (1−$ν) Bν(Td) dν = 4π

∫
kν (1−$ν) Jν dν (2.21)

where the scattering term is eliminated by the solid angle integration.

2.1.5 Scaling properties of radiative transfer

As described in Ivezić & Elitzur (1997), the radiative transfer equation for
dusty media possesses a number of scaling properties, that can be used to
simplify the modeling of dusty clouds, and the interpretation of the obser-
vational results.

The first of these properties is scale invariance. Consider a generic path
P, and the adimensional coordinate y = `/R1 along the path, with R1 an
arbitrary length scale. Then equation 2.11 can be written as:
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dIν

dy
= τν(P) η(y) [Sν(y)− Iν(y)] (2.22)

where η(y) is a dimensionless function describing the variations of the opac-
ity with position:

η(y) =
1

τν(P)
· dτν(y)

dy
=

kν(y)∫
kν(y) dy

(2.23)

Note that η(y) generally depends on the wavelength, but if the optical
properties of the individual absorbers do not change with position, this de-
pendence disappears. In the case in which the relative abundance is constant
along P, then the function η(y) reduces to the normalized dimensionless
density:

η(y) =
nd(y)∫
nd(y) dy

(2.24)

Equation 2.22 does not explicitly depend on quantities having the di-
mensions of length, since the absolute spatial scale has disappeared from
the formulation of the problem, and is only necessary to express the total
optical depth in terms of the physical size of the system. The properties of
the radiation described by equation 2.22, are instead fully described by the
adimensional variable y, showing that the problem is in fact scale invariant
with respect to the spatial scale.

A second important property of the radiative transfer equation, is the
way it scales with respect to the absolute normalization of the radiation
intensity and flux. As shown in Ivezić & Elitzur (1997) for a dusty medium
in LTE, if the only energy source is an external energy field IE

ν , then the
radiative transfer problem is fully specified by the temperature T1 at the
dust heated boundary, which defines the scaling function:

Ψ =
4σT 4

1

FE
1

(2.25)

where

FE
1 =

∫
dν

∫
IE
ν cos θ dΩ =

LE

4πR2
1

(2.26)

is the bolometric flux at the heating boundary layer, produced by an external
source of luminosity LE , placed at a distance R1. In the case of circumstellar
envelopes, T1 is the temperature at the radius R1 of the central cavity of
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the envelope, L∗ = LE is the parent star luminosity and FE
1 its bolometric

flux.
In a system in which the position of the boundary layer is determined by

the dust condensation (or sublimation) temperature Tcond (dust as close as
possible to the hot external source), then the absolute scale of the bolometric
flux is determined by the value of T1 = Tcond, and the only relevant property
of the input radiation is its adimensional spectral shape:

fE
ν =

FE
ν∫

FE
ν dν

(2.27)

For a circumstellar dust envelope, the spectral energy distribution of the
emitted radiation can be fully determined by specifying the spectral shape of
the central stellar radiation, the optical depth τν and the temperature T1 at
the inner envelope radius. This radius can either be the dust condensation
radius for a system that is currently producing dust, or the radius of the
central cavity in the case of a detached dust shell.

2.1.6 Solution for the spherically symmetric case

The solution of a radiative transfer problem is simplified in case of spherical
symmetry, which makes it one-dimensional. For this reason, spherical sym-
metry is often adopted as an approximation for the real geometry. This is
the case, for example, of dusty circumstellar envelopes: even though there
are evidences for departures from spherical symmetry (see discussion in sec-
tion 5), the quality of the data and the low spatial resolution of the images
justify in most cases this kind of approximation.

The problem of radiative transfer for a spherical dusty shell was first de-
veloped by Rowan-Robinson (1980), which gave a solution method for this
geometry. In this section we repeat his procedure, following the formalism
developed by Ivezić & Elitzur (1997), in order to provide a description of
the modeling procedure employed in the following chapters for AGB circum-
stellar envelopes.

In spherical symmetry the system is described by the radial adimensional
coordinate y; in the case of a dust shell, this coordinate can be defined to
have the value y = 1 at the inner envelope boundary (so that T1 is the inner
temperature of the envelope). In this geometry, the optical depth along an
optical path P is described by the following integral (see figure 2.1):

τν(y, θ) = τT
ν

∫ y cos θ

0
η

(√
u2 + y2 sin2 θ

)
du (2.28)
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θ
u

y

y = 1

Fig. 2.1.— Geometry of a spherically symmetric dust envelope: y is the radial distance
from the center of symmetry and u is the coordinate along the optical path intersecting
the radial direction at an angle θ.

where τT
ν is the total optical depth along the radial direction:

τT
ν =

∫ ∞

1
kν(y) dy (2.29)

In this assumptions, the formal solution of the radiative transfer equation
can be written as:

Iν(y, θ) = IE
ν e−τ(y) Θ

[
θE
1

y
− θ

]
+ Id

ν (y, θ) (2.30)

where Θ is the step function which limits the central star contribution only
inside its angular size θE

1 , and the last term is the dust component of the
radiative intensity:

Id
ν =

∫
Sν(y′, θ) e−[τν(y′,θ)−τν(y,θ)] dτν(y′, θ) (2.31)

In a similar way, the angle averaged intensity, necessary to derive the
dust thermal structure in the hypothesis of LTE, can be written as:

Jν(y) =
FE

1

4πy2
fE

ν e−τν(y) + Jd
ν (y) (2.32)
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where Jd
ν is the dust diffuse average intensity, which is determined by the

dust source function, and thus by the dust temperature. This last quantity
require the solution of the LTE equation, that can be rewritten as:

kP (Td) T 4
d = kP (T1) T 4

1

∫
kν (1−$ν) Jν(y) dν∫
kν(1−$ν) Jν(1) dν

(2.33)

where kP (T ) is the Planck-averaged opacity at the temperature T :

kP (T ) =
kν Bν(T ) dν∫

Bν(T ) dν
(2.34)

The flux scale Ψ, defined as F1 = 4σT 4
1 Ψ can also be rewritten as a func-

tion of the angle averaged intensity Jν(y); in the case of isotropic scattering,
in which g(Ω′, Ω) = 1:

Ψ =
∫

kν fE
ν dν

kP (T1)
· 1
1− ε

(2.35)

where

ε =
∫

kν (1−$ν) Jd
ν (1) dν∫

kν (1−$ν) Bν(T1) dν
(2.36)

In the optically thin limit (τν → 0) the problem can be solved analyti-
cally:

kP (T )
kP (T1)

(
T

T1

)4

=
1
y2

, Ψ =
∫

kν fE
ν dν

kP (T1)
(2.37)

From this result, it is clear that the thermal structure and flux scale
are fully determined by the spectral shape fE

ν of the external energy source
(the central star), and by the temperature T1 of the inner shell boundary.
If kν ∝ λ−β, it is easy to find the well known result (first derived by Sopka
et al., 1985):

T = T1 y
− 2

4+β (2.38)

where β ' 1–2 for silicates and carbonaceous dust (Marengo et al., 1997).
In the case of an optically thick dust shell, the problem must be solved

numerically, using an iterative method. By giving the optical properties kν

and $ν of the dust, the initial temperature T1, the dust density distribution
η(y) and the spectral shape fE

ν of the central star, one can solve equa-
tion 2.32 for Jν(y), with the dust temperature derived from equation 2.33
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and the flux scale given by equation 2.35. This method is applied in the
public domain radiative code DUSTY (Ivezić et al., 1999), where an initial
guess for the solution is provided by an analytical approximation, which is
then iterated until convergence.

2.2 Interaction between dust and radiation

The interactions between dust grains and radiation, from a microscopic point
of view, are described by the absorption and scattering opacities k

(a)
ν and

k
(σ)
ν . These two quantities are related to the electrical properties of the solid

material of which the dust is made.
As discussed earlier, cosmic dust grains are in general amorphous con-

glomerates of crystalline materials. If the molecules and atoms that form
the crystalline lattice are polar, their interactions with radiation are a con-
sequence of Maxwell laws. In particular, part of the energy of an incident
electromagnetic wave is absorbed by the dipoles in the lattice, and converted
into internal energy associated to molecular and atomic vibrational states,
or electronic population levels. Part of this internal energy is then emitted
again, at characteristic frequencies of the material dipolar structure.

In this section the physics of the microscopic interactions between dust
and radiation is reviewed. Since astronomical dust exists in the form of
microscopic grains, its optical properties are best described by Mie the-
ory, which allows to approximate the opacities of particulates with a rather
simplified set of assumptions. The optical properties of bulk materials are
instead derived by using the Kramers-Kronig relations, widely used in labo-
ratory measurements of opacity from thin films of material. These methods
are discussed in the last section.

2.2.1 The refractive index of solids

Consider a single oscillator of charge q and mass m in an electric field ~E
of harmonic frequency ω. In a dust grain this can be the case of a polar
molecule, an ion in the lattice, or a free or bound electron. The equation of
motion of the oscillator displacement around its rest position ~x is:

~̈x + γ~̇x + ω2
0~x =

q ~E

m
(2.39)

where γ is a dumping coefficient that counts for the “friction” opposed to
the oscillator motion and ω0 is the natural frequency of the oscillator (in a
classical physics analogy, mω0 would be the oscillator “spring constant”).
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The induced dipolar moment ~p = q~x is derived by solving the differential
equation 2.39:

~p =
−q2 ~E

m
· 1
(ω2

0 − ω2)− iγω
= α(ω) ~E (2.40)

where α(ω) is the polarizability α(ω) of the oscillator:

α(ω) =
−q2

m
· 1
(ω2

0 − ω2)− iγω
(2.41)

The macroscopic polarizability ~P of a medium made of N molecules per
unit volume is ~P = Nα(ω) ~E. From Maxwell equation the electric displace-
ment of such material is ~D = ε ~E = ~E + 4π ~P , where:

ε = 1 + 4πNα(ω) (2.42)

is the complex dielectric constant of the material. From equation 2.41 the
dielectric constant can be expressed in terms of the natural frequency ω0

and the dumping factor γ:

ε = 1 +
4πNq2

m
· 1
(ω2

0 − ω2)− iγω
(2.43)

With this formalism, ε is a complex function of ω, and can thus be
decomposed in its real and imaginary part:

ε′ = 1 +
4πNq2

m
· (ω2

0 − ω2)
(ω2

0 − ω2)2 + γ2ω2
(2.44)

ε′′ =
4πNq2

m
· γω

(ω2
0 + ω2)2 + γ2ω2

(2.45)

Figure 2.2 shows the behavior of the dielectric constant around a natu-
ral frequency ω0 of the solid. The real part ε′ in general increases with the
frequency ω (normal dispersion). When ω ∼ ω0, however, the value of ε′

decreases with ω and this is known as anomalous dispersion. The width of
the anomalous dispersion is related to the value of γ: the larger the dump-
ing coefficient of the oscillating dipole, the larger the anomalous dispersion
region is. Similarly, the imaginary part ε′′ has a peak for ω ∼ ω0, whose
width is also related to γ. Since γ measures the efficiency of a medium to
“dump” an incident electromagnetic field, e.g. to extract energy from it, it
is related to the opacity of the material. The anomalous dispersion region
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Fig. 2.2.— Real and imaginary part of the dielectric constant ε = ε′ + iε′′, plotted
around the natural frequency ω0 of the oscillating dipole

is where the absolute value of ε is larger, e.g. where the radiation is mostly
absorbed. A material will thus be opaque at wavelengths close to its natural
frequencies ω0, and the amount of opacity is related to the magnitude of γ.

To make this explicit, one can translate the dielectric constant in terms of
the complex refractive index n = n + ik, defined as ratio between the speed
of the radiation in the vacuum and in the solid. By writing the incident
radiation as an idealized harmonic wave with frequency ω and wavelength
λ:

A = A0 ei(ωt+ 2π
λ

x) (2.46)

the same radiation will propagate in the medium as:

Ã = A0 ei(ωt− 2π
λ

nx) e−
2π
λ

kx (2.47)

The imaginary part k of the refraction index is thus responsible for the
absorption of the incident radiation, while n is the optical refraction index
related to the phase shift in the transmitted electromagnetic wave. By
solving equation 2.39 with a solution in the form 2.47, one can derive the
relation between n and the complex refraction index ε:



28 Theoretical basis: dust, radiation and matter interactions

ε′ = n2 − k2 = <[
n2

]
(2.48)

ε′′ = 2nk = =[
n2

]
(2.49)

The real and imaginary part of the refraction index, and the complex di-
electric function, are thus complementary parameters describing the optical
properties of a certain material. They depend on the atomic and molecular
constants of the medium, and in particular on the natural frequencies and
dumping factors of the dipolar oscillators. In general, a solid can have as
many ω0 and γ, as the number of its possible dipolar oscillators. These can
be due to: (i) the orientation of polar molecules in the solid, (ii) the ionic
polarization due to the relative movements of ions in the solid, and (iii)
the electronic polarization due to the displacement of atomic electrons with
respect to their nuclei. These three types of oscillators have different ω0,
characteristic of separate regions of the electromagnetic spectrum. Solids
with polar molecules will have absorption features at frequencies around
∼ 1011 Hz (millimetric wavelengths), ionic polarization will give rise to fea-
tures at ∼ 1013 Hz (infrared), while electron displacement will have effects
on the spectra at ∼ 1015 Hz (UV).

Since we are mainly interested to the properties of dust in the mid-IR,
the optical constant of the grains at such wavelengths will be dominated by
features related to the ionic vibrations in the dust lattice.

2.2.2 Mie Theory

Mie theory describes how spherical, homogeneous particles interact with
electromagnetic radiation. It rests on the following assumptions:

- the only significant interactions are between single particles and radi-
ation of arbitrary wavelength

- the frequency dependent optical constants (ε or n) fully describe the
optical properties of the particles

- the scattering of radiation from the particles is elastic (the wavelength
of scattered radiation is the same as that of incident light)

- there is no systematic phase relation between the radiation scattered
by the particles
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- the medium in which the particles are distributed is homogeneous and
isotropic

With Mie theory one can express the scattering and absorption opacities
as a function of the optical constants. This is done by assuming the medium
as made of N identical particles per unit volume, interacting with a radiation
of intensity Iν . From equations 2.6 and equation 2.7, the intensity of the
absorbed and scattered radiation is:

I(a)
ν = k(a)

ν Iν (2.50)

I(σ)
ν = k(σ)

ν Iν (2.51)

The opacities k
(a)
ν and k

(σ)
ν are in general proportional to the number

density and the geometrical cross section of the particles. The constants of
this proportionality are the efficiencies of the particles material in absorbing
and scattering the radiation, and are defined as:

Q(a)
ν =

k
(a)
ν

πa2N
(2.52)

Q(σ)
ν =

k
(σ)
ν

πa2N
(2.53)

By using Mie theory, the efficiencies Q
(a)
ν and Q

(σ)
ν can be written in

terms of ε (see e.g. van de Hulst, 1957):

Q(a)
ν =

8πa

λ
=

[
ε− 1
ε + 2

]
(2.54)

Q(σ)
ν =

8
3

(
2πa

λ

)4

<
[
ε− 1
ε + 2

]
(2.55)

2.2.3 Kramers-Kronig dispersion relations

For a bulk material, generally opaque to an incident radiation, a transmission
spectra from which to measure n (and thus Q

(a)
ν and Q

(σ)
ν ) is not always

available. In this case, the only observable is the reflectance power R, that
is the ratio between the incident and reflected intensity at wavelength ω:

R(ω) =
IR
ν

II
ν

(2.56)
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R(ω) is a wavelength dependent quantity related to the reflectivity r(ω),
that gives the efficiency in which the electric field of an electromagnetic wave
is reflected by the material:

ER = r(ω) EI (2.57)

As a complex quantity, r(ω) can be written in the form r(ω) = ρ(ω)eiθ(ω),
where ρ(ω) is the magnitude of the reflectivity and θ(ω) the phase shift
between the reflected and incident wave. By solving the wave equation for
E, one gets:

r(ω) =
1− n
1 + n

(2.58)

Since R(ω) = r(ω)r∗(ω) = ρ2(ω), then:

R =
∣∣∣∣
1− n
1 + n

∣∣∣∣ (2.59)

thus allowing to express the real and imaginary part of the refraction index
as a function of R and θ:

n =
1−R

1 + R− 2
√

R cos θ
(2.60)

k =
−2
√

R sin θ

1 + R− 2
√

R cos θ
(2.61)

If R can be measured in the laboratory, θ is much more complex to
obtain. A relation between R(ω) and θ(ω) is however given by the Kramers-
Kronig relations, which connect the real and imaginary part of any analytic
function (see e.g. Jackson, 1962, p. 311). Using the Kramers-Kronig relations
one can compute the value of θ(ω) from the measured values of R(ω):

θ(ω) =
−ω

π
P

∫ ∞

0

lnR(ω′)− lnR(ω)
ω′ − ω

dω′ (2.62)

where P stands for the principal part of the integral.

2.2.4 Experimental determination of dust opacities

Mie theory and the Kramers-Kronig relations allow the determination of the
optical constants of solids in an experimental setup, and can thus be used,
in principle, to measure the opacity of cosmic dust in the laboratory. The
problem, however, is the general unavailability of cosmic dust to perform
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the experiments (given that the meteoritic dust grains cannot be isolated in
the required quantities).

Astronomical spectra should then be used, and this is possible in the case
of optically thin sources, when the main component of the observed spectra
is either the extincted background radiation (as for interstellar dust), or the
thermal emission from a dusty envelope.

Consider the formal solution of the radiative transfer equation 2.14 for
τν ¿ 1. In the first case (background component prevailing), the source
function contribution can be neglected, and:

Iν(P) ∼ Iν(0) τν(P) (2.63)

In the second case, instead, if the scattered radiation can be ignored (in
a circumstellar envelope, the scattering contribution to the mid-IR spectra
is usually less than 1%):

Iν(P) ∼ Iν(0) τν(P) + Bν(Td) τν(P) (2.64)

where Td is the dust temperature in the region of the dust cloud where the
radiation is emitted (the dust photosphere).

In both cases, the observed radiation intensity is proportional to the
total optical depth of the dust. If the external source spectrum Iν(0) and
the dust continuum thermal radiation Bν(Td) can be modeled, the observed
dust spectrum can be rectified in order to measure τν directly from the data.

Once τν is known, the total absorption efficiency Qν = Q
(a)
ν + Q

(σ)
ν is

derived by equations 2.52 and 2.53:

Qν =
τν

πa2ND
(2.65)

where N is the dust number density, and D the length of the optical path P,
estimated by the physical dimensions of the dust cloud (or the circumstellar
envelope).

Once the absorption efficiency Qν is measured for a certain astronomical
source, the comparison with laboratory spectra is necessary for the min-
eralogical identification of the dust, and to have a set of optical constants
physically consistent. The laboratory measurement of opacity is made with
one of the following procedures:

- measurements of refractive angles, which allow to derive the real part
of the refractive index by use of Schnell’s Law. A sample of high
transparency is required.
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- measurement of transmittance and reflectance at near normal inci-
dence; the sample should also be quite transparent, but not as much
as in the above case. The optical constants are then derived using Mie
theory.

- measurements of reflectance at near-normal incident over a wide range
of frequencies. The optical constants are derived by use of the Kramers-
Kronig relations.

- ellipsometric techniques, which measures amplitude ratios and phase
shifts directly, but are very difficult to use.

- measurements of reflectance for incident light of various polarization
states and two oblique angles of incidence. This method is also dif-
ficult to perform, since it requires large sample surfaces, usually not
available.

In practice, most of the “astronomical dust” opacities are derived by
measuring the transmittance and reflectance of particulates embedded in a
matrix of potassium bromide (KBr) that is supposedly transparent and lin-
ear for infrared measurements. This point, however, is controversial, since
(Dorschner et al., 1978) found a wavelength shift between opacities measured
with this method and from bulk material. The correction they introduced
is widely used, but has recently been criticized on the basis of new measure-
ments by (Speck, 1999).

To overcome these problems, many of the most recent opacities are now
measured with the reflectance method, applied to thin films of bulk material
enclosed in a diamond anvil.

2.3 Interaction between dust and matter

Even though most of the optical extinction and infrared emission of ISM
and circumstellar envelopes is provided by dust, 99% of the total mass is
due to the gaseous component of the circumstellar and interstellar medium.
This is even more true for the ICM, where the presence of dust is uncertain,
but large amounts of hot gas are responsible for the observed strong X ray
emission. The interactions between dust grains and gas can in general give
rise to physical and chemical modifications of the grains, and can play an
important role in the dust thermodynamic and survival.

In circumstellar envelopes and molecular clouds, dust/gas interactions
are responsible for the dynamics of mass loss around giant stars, and for
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the chemical reactions that give rise to grain nucleation and growth. This
processes are briefly discussed in chapter 4, in relation to the stellar winds
of variable AGB stars.

This section focuses instead on the physical interactions mediated by
the collisions of gaseous particles with the grains. If the kinetic energy of
the colliding gas particles is high enough, compared with the energy density
of the radiation, the heating processes of dust grains is dominated by such
collisions, and the thermodynamical state of the dust can be very far from
LTE. Grain charging and momentum transfer are also important, and should
be considered when the dust is embedded in hot plasma, as in the case of
SN remnants and ICM.

2.3.1 Grain charging

If the gas particles interacting with a grain are ionized, or can be ionized
during the impact, then an electric charge can be transferred to the grain.
The amount of the electric charge that builds up after several collisions
can be very important, because determines the cross section of the grain
with respect to impinging charged particles. Charging can also lead to the
grain disintegration, when the accumulated charge is too high for the solid
state forces that maintain the grain structure (Draine & Salpeter, 1979).
Secondary particle emissions, electrons in negatively charged grains, or ions
in grains with total positive charge, may however limit the total charge, thus
preventing the grain destruction.

In steady state conditions, the total charge assumed in dust/ion collision
is determined by the following equation:

(
dQ
dt

)

tot

=
(

dQ
dt

)

e

+
∑

Z

(
dQ
dt

)

Z

= 0 (2.66)

where the first term refers to the electronic components of the plasma, and
the sum over Z is made over the positive ions. In the presence of ionizing
radiation fields, a contribution (dQ/dt)ph due to photoelectric effects should
also be taken into account, as can increase the positive charge of the grains,
when the photoelectrons escape through the grain surface (see e.g. Spitzer,
1978).

In the case of hot plasma (T & 107 K) the grains become transparent
to electrons, and are charged positively. The efficiency of grain charging is
however limited by secondary electron emission. As a result, the acquired
dust electric potential is significantly smaller than the mean kinetic energy
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of the gas particles (qU/kT ¿ 1), and the collisional cross section is thus
simply given by the geometrical one (Dwek & Arendt, 1992).

2.3.2 Grain dynamics

Dust/gas collisions provide momentum transfer between dust grains and the
gas. If θ is the incident angle in such a collision, the transferred momentum
is:

∆p =
{

2mv cos θ for elastic scattering
mv cos θ for inelastic scattering

(2.67)

The first case applies if the gaseous particle is reflected from the grain
surface, while inelastic scattering occurs in case of absorption. If the trapped
gas particle is subsequently emitted with a Maxwellian distribution of veloc-
ities at dust temperature, the final momentum can be larger than mv cos θ.
This process is called diffuse reflection (Baines et al., 1965), and is more ef-
ficient when dust and gas temperatures are coupled and similar, as in dense
molecular clouds.

In hot plasma, where the dust temperature is negligible with respect to
the temperature of the gas, the momentum transfer in the release of the
particle is very small, and ∆p ∼ mv cos θ. Then:

∆pp

∆pe
'

√
mp

me
(2.68)

where mp and me are the masses of the positive and negative charged parti-
cles (the latter are usually electrons, in which case most of the momentum
transfer is due to the positive ions).

In circumstellar envelopes gas and dust are not coupled dynamically, and
elastic reflection prevails, giving rise to the dragging force responsible for the
envelope expansion in the winds of evolved stars (see chapter 4).

2.3.3 Grain destruction

The two main mechanisms for grain destruction are thermal evaporation
and sputtering . The first process occurs when the grain temperature is high
enough that the thermal energy kTd of the surface atoms in the high energy
tail of the kinetic distribution overcomes the lattice binding energy. In this
process the grain cools down, preventing further evaporation. Only when Td

exceeds the dust sublimation temperature (Tsubl ' 1000 K for carbonaceous
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Fig. 2.3.— Sputtering rates for grains of different composition, as a function of gas
kinetic temperature. From Draine & Salpeter (1979).

grains, and ' 1500 K for silicates), the grain completely evaporates in a
short time.

Physical sputtering consists in the extraction of grain surface atoms by
incident particles, primarily ions because of the larger energy and momen-
tum transfers (Scalo et al., 1977). This process is to be distinguished from
chemical sputtering, in which an incident particle bounds with a surface
atom, creating an unstable molecule that eventually disintegrates, ejecting
both particles from the grain (see e.g. Roth, 1983).

Dust sputtering is the main destructive process for dust in hot gas. It can
be described as a cascade process, in which the incident particle first sets in
motion a few target atoms, that in turn accelerate other atoms transferring
enough energy to make them escape the grain. In the extreme cases in which
all the atoms of the dust grain are involved, a complete evaporation takes
place, and the grain is destroyed.

The sputtering lifetime is defined as the inverse of the rate in which a
population of grains is depleted by sputtering, and is proportional to the
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grain volume V ∝ a3 (the number of atoms to be removed) and inversely
proportional to the grain cross section ∝ πa2 and gas density ng:

τsputt =
1
N

[
dN

dt

]−1

∝ V

πa2 ng
∼ a

ng
(2.69)

The sputtering rate in general depends on the grain composition and
the kinetic temperature of the sputtering gas (see e.g. figure 2.3). If the
temperature range is between 106 and 109 K this dependence can be ignored,
and the following approximation is valid within a factor of 2 (Draine &
Salpeter, 1979):

τsputt (yr) ' 106 a (µm)
n (cm−3)

(2.70)

2.3.4 Grain thermodynamics

The energy deposited by incident particles in dust/gas collisions can domi-
nate the dust grain thermodynamics if the gas kinetic energy is higher than
the energy density of the ambient radiation field. This is typical for dust
surviving in a hot plasma, subjected to electrons and ions collisions.

To evaluate the separate contribution of the positive and negative ions to
the collisional heating of the dust grains, assume the plasma is thermalized
to a temperature T . Then the individual ions of mass m have a Maxwellian
energy and velocity distributions f(E), and v(E) respectively :

f(E) =
2√
π

E
1
2

(kT )
3
2

e−
E
kT (2.71)

v(E) =
∫ (

2E

m

) 1
2

f(E) dE (2.72)

The heating rate of a grain is proportional to the grain cross section, the
gas density, and the average energy transfer of the collisions is:

Hcoll = πa2ng

∫ ∞

0
f(E) v(E) Eζ(E) dE (2.73)

where ζ(E) is the efficiency in which the energy of the ionic particle is
transferred to the dust grain. In the case of incident electrons, this function
is given by Dwek & Werner (1981):
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ζ(E) =





1 forE . E∗

1−
[
1− (

E∗
E

) 3
2

] 2
3

for E > E∗
(2.74)

This approximation reflects the idea that for impact energy lower than a
critical value E∗(erg) ' 3.7 ·10−8a2/3(µm) the electron energy is completely
absorbed, while for higher energies the grains starts to become transparent
to the impinging electrons.

By substituting the explicit form of the Maxwell distributions in equa-
tion 2.73, one obtains:

Hcoll =

√
8

πm

ng

(kT )3/2

∫ ∞

0
x2e−x ζ(E) dx (2.75)

Notice that Hcoll ∝ m1/2, and thus electron collisions prevails as heat-
ing sources of dust in a hot plasma. The average time between successive
ion/grains collisions is defined as the reciprocal of the collision rate:

Rcoll = πa2ng

∫ ∞

0
v(E) f(E) dE (2.76)

Since τcoll = (Rcoll)−1 ∝ m1/2, again electronic collisions due to the lower
mass particle prevails.

If a grain is not evaporated by the energy input of an electron collision, its
initial temperature is gradually restored by radiative cooling. The radiative
cooling rate is given by the total flux irradiated by the dust grains, as in
equation 2.19:

Λrad(T ) =
∫ ∞

0
kνBν(T ) dν (2.77)

= 4πa2 QP (T ) σT 4 (2.78)

where QP (T ) is the Plank averaged absorption efficiency defined similarly
to the Planck averaged opacity kP in equation 2.34:

QP (T ) =
∫ ∞

0
Qν Bν(T ) dν (2.79)

The radiative cooling time τcool is defined as the total time needed by a
grain to change its temperature from Ti to Tf :
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τcool(Ti, Tf ) =
∫ Tf

Ti

∣∣∣∣
dT

dt

∣∣∣∣
−1

dT (2.80)

where

dT

dt
=

1
cV (T )

[H0 − Λrad(T )] (2.81)

is inversely proportional to the volume heat capacity of the grain material
at the given temperature cV (T ), and to the difference between the radiative
cooling and the minimum heating rate H0 provided by the background ra-
diation field. This last term can in principle be expressed as a function of
the temperature T0 which the grain would have if in equilibrium with the
ambient radiation field:

H0 = 4πa2 QP (T0) σT 4
0 (2.82)

Note that if H0 ∼ Λrad then the cooling time will be infinite, and the
grains will be at the equilibrium temperature T0 of the radiation field. This
is the case, for example, of dust in circumstellar envelopes that is in LTE
with the radiation (and T0 is the local equilibrium dust temperature Td).
In the case of ICM dust, however, Λrad À H0, and the main source of
energy for the dust are the collisions with the electrons in the ICM plasma;
the minimum temperature T0 is defined as the temperature of the cosmic
background radiation, or the equilibrium temperature that the dust would
have with respect of the X-ray radiation emitted by the gas.

According to the ratio between the cooling and collision time, dust grains
are in thermal equilibrium with the gas, or will oscillate between successive
heating and cooling at each collision: in this case the thermal status of
the dust is described by a statistical distribution of temperatures, in what
is called a stochastic heating process. An example of stochastic heating is
provided by dust in the ICM, and is discussed in chapter 6.


