
Chapter 6

Models of ICM dust

When in section 1.2.4 the question of dust presence in the hot intracluster
medium (ICM) of galaxies was raised, a particular emphasis was given on
the absence of convincing proofs of its survival in such a hostile medium.
The attempts to quantify the amount of dust dispersed in the ICM by using
extinction measurements have given contradicting results. The efforts to
detect direct thermal emission from such dust have also yielded results which
are not fully convincing.

For a better understanding of dust physics in hot plasmas, it is necessary
to predict the expected emission, in view of the present and future obser-
vational campaigns. This requires a detailed model for the temperature
distribution of ICM dust.

An algorithm which derives the temperature of dust embedded in a hot
astrophysical plasmas was developed by Dwek (1986). In this chapter a new
numerical implementation of this method is discussed, and a parallel code,
able to compute the stochastic temperature distribution for a wide range of
input parameters, is presented. The case of the Coma clusters of Galaxies
is studied, and possible astrophysical applications, are suggested.

This work has been made under the supervision of Dennis W. Sciama at
SISSA/ISAS (Trieste, Italy) and in collaboration with Avery Meiksin (now
at University of Edinburgh, UK).

6.1 Characteristics of ICM dust

The basic characteristics of ICM dust are described in section 1.2.4. They
are inferred from the status of the hot plasma that accumulates at the gravi-
tational well of massive clusters of galaxies, which in turn are mainly derived
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by X-ray observations.
The physical status of dust and gas in the ICM is a fundamental ingre-

dient to model the thermal structure of ICM dust, and is reviewed in this
section in reference to the specific case of the Coma Cluster of galaxies.

6.1.1 The Coma Cluster of Galaxies

The Coma cluster of galaxies is considered as the archetype of a virialized
cluster in state of thermodynamical equilibrium (Kent, 1982). The distance
D ' 138 Mpc, and the high luminosity LX ' 1.7 · 1045 erg s−1 (Mushotzky
et al., 1978) makes the Coma cluster an ideal observational target. It was,
in fact, the original cluster in which what has come to be known as dark
matter was discovered (Zwicky, 1933).

Even though there are evidences of substructures inside the cluster, its
status of disequilibrium is probably not too severe (Briel et al., 1992). The
virialization of the galaxies in the cluster allows to derive a smooth law for
their distribution, which have been measured by Henriksen & Mushotzky
(1986):

g(r) =

[
1 +

(
r

rG

)2
]−3/2

with rG ' 0.25 Mpc (6.1)

The dynamical equilibrium of the cluster is also reflected by the enor-
mous quantities of gas which constitutes the intracluster medium. This gas
supports itself in hydrostatic equilibrium against the gravitational field of
the cluster, which requires a kinetic temperature of the order of 106–108 K.
The main energy loss at such high temperature is through bremsstrahlung
radiation, responsible for the diffuse X-radiation which is the main cooling
mechanism for the ICM.

X-ray images of the Coma cluster have been obtained with the ROSAT
satellite, and measure its radial brightness distribution. A best fit analytical
representation of the azimuthally averaged surface luminosity of the cluster
is given by Briel et al. (1992), and corresponds to a modified isothermal
King profile (King, 1966):

FX(r) ' 3.5 · 10−8 erg cm−2 sr−1

[
1 +

(
r

rX

)2
]−1.75

(6.2)

where rX ' 0.42 Mpc is the core radius of the cluster.
The gravitational binding mass that is inferred for the cluster is Mtot '

1.8 · 1015 M¯, assuming a Hubble constant H0 ' 50 km s−1 Mpc−1 (Briel
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Fig. 6.1.— Radial profiles for ICM gas temperature and density profiles for Coma
Cluster. Derived from Henriksen & Mushotzky (1986).

et al., 1992). Since the total mass of the gas (Mg ' 1014 M¯) is at least an
order of magnitude less (Dwek et al., 1990), one should conclude that most
of the gravitational force in the cluster is produced by Dark Matter (DM).

6.1.2 The ICM gas

As for the Coma cluster, the total X-ray luminosity of a rich cluster of galax-
ies is of the order of 1043–1045 L¯ (Fabian, 1994b). It is from the analysis
of this radiation that most of the information on the status of the ICM
gas are derived. Emission lines of highly ionized Fe are observed in bright
clusters, with ∼0.3 solar abundances. Many other metals are also detected,
which equal and even exceed solar abundance (Fabian, 1988). This confirms
that the ICM gas is chemically enriched, and cannot be primordial. Its ori-
gin is uncertain (see section 1.2.4), but its chemical enrichment suggests its
provenience from the galaxies in the clusters.

The spatial density and temperature distribution of ICM gas is also fitted
by X-ray surface brightness maps. Best fit profiles for the Coma cluster are
plotted in figure 6.1, as given by Henriksen & Mushotzky (1986):

ng(r) ' 2.5 · 10−3 cm−3 f(r) (6.3)

Tg(r) ' 2 · 108 K f(r)1/2 (6.4)

where
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f(r) =

[
1 +

(
r

rc

)2
]−1.14

with rc ' 0.4 Mpc (6.5)

These expressions will be used in section 6.2.4 to compute the tempera-
ture distribution of dust at different distances from the center of the cluster.

6.1.3 Size and spatial distribution of the grains

The size and density distribution of dust in the ICM is determined by the
time for which the grains have been exposed to the sputtering action of
the hot gas. Since typical interstellar grains are smaller than 0.5 µm (see
equation 1.1), according to equation 2.70 they cannot survive longer than
108 yr in the central region of a rich cluster. Thus, if dust is present in the
ICM, it cannot be primordial. As shown in section 1.2.4, injection of dust
from the cluster’s galaxies is the most plausible hypothesis to explain its
presence in the ICM, as inferred by extinction measurements.

Assuming a galactic origin of ICM dust, an initial size distribution similar
to MRN distribution (equation 1.1), as for the ISM, is to be expected: nd ∼
a−k, with k = 3.5. The initial gas to dust mass ratio should also be equal
to the galactic value, or Zd = 0.0075.

Once the dust is transferred into the ICM, it is rapidly eroded by the
sputtering action of the gas. To guarantee a continuous presence of dust, the
injection episodes should occur with a relative frequency (less than 108 yr),
otherwise the dust disappears. If the dust is continually replenished by the
galaxies, a steady state size-diffusion equation can be written (Dwek et al.,
1990):

dnd(a, r)
da

=
[
τsputt(a, r)

a

] [
dnd,i(a, r)

dt

]
(6.6)

where dnd(a, r) is the grain number density at distance r and in the size
interval a and a + da, and dnd,i(a, r)/dt is the initial injection rate of dust
particles of radius a. Assuming all the ICM gas originated in the galaxies,
and a constant gas outflow during the lifetime τ0 of the cluster, then

dnd,i(a, r)
dt

∼ nd,i(a, r)
τ0

(6.7)

where nd,i(a, r) = nd,i(0) · g(r) · a−k is the initial size-density distribution of
the injected dust. The dust density at the center of the cluster nd,i(0) is:
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Fig. 6.2.— Schematic profile of Coma cluster dust, with steady state ∼ a−k+1 radial
size distribution in the inner core of the cluster, and ISM like distribution outside the
central region, where the dust is not effectively sputtered.

nd,i(0) =
µgng(0)mHZd

〈md〉 (6.8)

where µg ·mH is the mean atomic weight of the gas and 〈md〉 the average
mass of the grains in the MNR size interval. From equation 2.70, since
τsputt ∝ a/ng:

τsputt(a, r) =
τsputt(a, 0)

f(r)
(6.9)

Then:

dnd(a, r) =
τsputt(a, 0)

τ0
· nd,i(0)

a
· g(r)
f(r)

· a−k da (6.10)

The last equation can be integrated with respect to a. Since τsputt/a ∼
const(a), the only term of equation 6.10 which depends from a is the MRN
distribution factor a−k, and then:
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nd(a, r) =
τsputt(a, r)

τ0
· µgng(0)mHZd

〈md〉
[

g(r)
f(r)

] (
a−k

k − 1

)
(6.11)

This relation is valid only at distances in which the sputtering time does
not exceed the age of the cluster. For the Coma cluster this is true only in
the central 3–4 Mpc region, outside of which the dust is not effectively sput-
tered, and the dust density monotonically increases if continuously ejected
by the galaxies (Dwek et al., 1990). The resulting radial profile is shown in
figure 6.2.

Equation 6.11 shows that, since τsputt ∝ a−1, steady state ICM dust
has a size distribution nd(a) ∝ a−(k+1), which makes it different from the
newly injected MNR distribution nd,i(a) ∝ a−k. A second characteristic of
the steady state dust distribution is the radial dependence g(r)/f(r) which
reflects the distribution of the dust sources (the galaxies) and destructors
(the gas).

6.1.4 Dust properties

Equation 2.77 shows that the cooling rate necessary to derive the thermody-
namics of grains, depends on the dust Planck averaged absorption efficiency.
This quantity depends on the optical properties of the dust, and thus on its
composition and grain size.

Opacities for dust in Active Galactic Nuclei (AGNs) have been derived
by Laor & Draine (1993) by applying Mie theory to model grains in the
5 · 10−3–10 µm size, over the 1000 µm–1 Å range. The optical constants are
available for silicates, graphite and SiC, and have been derived by fitting
the observed spectra of AGNs from the IR to X.

We have computed the Planck averaged absorption efficiency of silicates
and graphite in order to provide the cooling rates of carbonaceous and oxidic
dust having different sizes. Our grain size range have been restricted to the
1 · 10−3–0.1 µm interval, on a grid made of 41 points. For small grains,
Qν(a) ∼ a, and thus QP /a is roughly constant. For λ & 20 µm, Qν ∼ λ−2,
and thus equation 2.79 gives QP (a, t)/a ∝ λ2. This power-law is valid in
our grain size range for low temperatures, where the black body emission
is peaked at short wavelength. An example of Planck averaged absorption
efficiency for dust grains having a ' 0.01 µm is given in figure 6.3.

A second ingredient which is used to compute the grain radiative cooling
time is their heat capacity (see equation 2.81), which is available as a fit for
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Fig. 6.3.— Planck averaged opacity for Laor & Draine (1993) silicate and graphite
grains (the grains size a is in cm).

laboratory data. We have used the power-laws given by Dwek (1986) for
graphite grains, and by Draine & Anderson (1985) for silicates.

6.2 Temperature distribution

The thermodynamical status of ICM dust is determined by the balance
between radiative cooling and heating. Two heating mechanisms prevails:
radiative heating by the background radiation flux in the cluster, and colli-
sional heating due to the electrons of the ICM plasma (see section 2.3.4). If
the radiative heating due to the background can be considered continuous,
collisional heating depends on the timescales τcoll between two successive
grain - electron collisions. If τcoll & τcool the grains receive from the gas
enough energy to maintain a constant equilibrium temperature, while in
the opposite case (τcoll ¿ τcool) the grains temperature oscillates at each
collision.

This section describes our implementation of the model developed by
Dwek (1986). First the equilibrium temperature for grains continuously
heated is evaluated, and then a method to compute the statistical temper-
ature distribution of stochastically heated grains is explained, and applied
to the case of the Coma cluster.
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6.2.1 Equilibrium temperature

The equilibrium temperature for collisional heated dust is given by equat-
ing the total heating rate provided by the collisions and by the radiation
background Hcoll(Td) + H0(T0), with the radiative cooling rate Λrad(Td).
The background heating rate is in general given by two components: a low
energy background caused by the Cosmic Microwave Background Radiation
(CMBR), and a high energy flux due to the cluster X-ray emission:

H0 = FX + 4πa2 QP (TCMBR) σT 4
CMBR (6.12)

The collisional heating rate is given by equation 2.73, and depends on
the gas parameters (Te and ne), the grain size a and the critical energy E∗
which regulates the absorption of energy from the colliding electron. For
high gas temperatures E∗/kTe À 1 the integral in equation 2.73 can be
solved with an analytical approximation, giving Hcoll ∝ a2ngE

3/2
∗ . Since

E∗ ∝ a2/3, then Hcoll ∝ a3n.
The cooling rate is given by equation 2.77. Using the approximation

of the Planck averaged absorption efficiency valid for small grains and low
temperatures (QP (a, Td) ∝ aT 2

d ), one has Λrad ∝ a2 T 4
d QP (a, Td) ∼ a3T 6

d .
In thermal equilibrium, heating and cooling rate are equal. Neglecting

the contribution of the background flux, in this approximation the equilib-
rium temperature is independent by the grain size and the gas temperature,
and is only a function of the gas density. The complete calculation of this
result was given by Dwek (1987):

Teq ' 57Kn1/6
g (6.13)

with ng in cm−3, and for Te & 3 · 107 K. We have tested this relation by
solving the equilibrium temperature equation for Te in the interval 106–
109 K, and ne ∼ 10−6–10−2 cm−3. The result is shown in figure 6.4. Even
though the approximate solution is in the same range of temperature of the
exact computation, a certain spread of the equilibrium temperatures is still
present, in function of the gas temperature Te.

Figure 6.4 shows that the equilibrium temperature of ICM dust heated
by hot ICM gas goes from ∼ TCMBR to 40 K. When the X-ray background
flux is added, this temperature can be higher, but our calculations show
that the main heating factor are the collisions with the gas.

Note that with dust temperatures in this range, the peak of emission
would be in the far-IR or millimetric. However,this is not always the case.
When the collisions are sporadic and the temperature of the grains is allowed



6.2 Temperature distribution 173

Fig. 6.4.— Equilibrium temperature for ICM dust, computed on a logarithmic grid
of electron kinetic temperatures from 106 to 109 K. The dashed line is the Dwek (1987)
approximation in equation 6.13.

to oscillate, a statistical distributions is extablished, as shown in the next
section.

6.2.2 Stochastic heating

When the cooling time is much shorter than the interval between collisions
of gas particles with the grains, thermodynamical equilibrium cannot be
established. In this situation, the idea of “equilibrium temperature” does
not make sense anymore, since different grains at different times will not
have the same temperature. The only quantity that can be defined in these
conditions is a probability that a grain of given size a will have temperature
Td when observed.

Assume that, at time t0, a dust grain of size a is at temperature Ti.
Then a collision with a free plasma electron occurs, and a fraction ζ(E) of
the impact energy E is transferred to the lattice of the grain. The final
temperature Tf , that is a function of the electron energy and the initial
status of the grain, is given by the following equation:
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Fig. 6.5.— Temperature oscillations of a stochastically heated dust grain.

Eζ(E) =
∫ Tf

Ti

cV (T ) dT (6.14)

After the collision, the grain cools down asymptotically toward the mini-
mum temperature T0 set by the background, until a new scatter raises again
its temperature to a different value T ′f , according to the energy of the new
electron (see figure 6.5).

The rate at which the grain cools down to the minimum temperature T0

is given by equation 2.80. Since the heat capacity cV ∝ a3 and the Plank
averaged absorption efficiency QP ∝ a, this cooling time does not depend
on the grain size a:

τcool ∼ cV (Td)
a2 QP (a, Td)

∼ const(a) (6.15)

The expected cooling time for silicate and graphite grains ranges from
105 s (for Tf ∼ 10 K) to 10−1 s (for Tf ∼ 1000 K). The expected collision
time for ICM with Te ∼ 108 K and n ∼ 10−3 cm−3 is ∼ 103 s, for grains with
s ∼ 5 · 10−2 µm. Only larger grains (which have a larger cross section and
heat capacity) will experience enough collisions to reach thermal equilibrium
with the gas. Smaller grains are instead heated to higher Tf (smaller cV ∝
a3), and cool down to lower temperature before another collision (due to
their smaller cross sections). These small grains are not in equilibrium with
the rest of the ICM.

The fraction of the time spent by a grain cooling down from Td +dTd to
Td with respect to the collision time is given by (Purcell, 1976):



6.2 Temperature distribution 175

PE(a, Td) dTd =
dt

τcoll
e−

τcool
τcoll (6.16)

The probability that a grain of size a is heated to a certain temperature
Td from Ti is obtained by averaging PE over the flux distribution of the
incident electrons:

ATi,Td
= 〈PE(a, Td)〉nva2f(E) (6.17)

For a Maxwellian kinetic temperature distribution of the ICM gas (equa-
tion 2.71), the explicit expression of the transition matrix A(Td, Ti) is:

ATi,Td
= θ(Td)

∫ ∞

0
e
− R Tf (x,Ti)

Td
θ(T ) dT

xe−x dx (6.18)

where x = E/kTe and θ(T )dT is the fractional cooling rate:

θ(T )dT =
dT

τcoll

∣∣∣∣
dT

dt

∣∣∣∣
−1

(6.19)

The transition matrix A(Td, Ti) computes the temperature distribution
of the grains after one collision, for a grain population of initial temperature
Ti:

g(k) ≡ G(a, Td; Ti) → g(k+1) = Ag(k) (6.20)

After many collisions (k → ∞), the grain population reaches a “steady
state” g ≡ G(a, Td) in which their temperature distribution does not change
after another collision:

(1− A)g = 0 (6.21)

This final state is called stochastic temperature distribution, and gives
the probability G(a, Td) dT that a grain of size a, in statistical equilibrium
with the ICM gas, has the temperature Td.

6.2.3 Numerical approach

An iterative method to compute the “steady state” stochastic distribution
G(a, Td) has been proposed by Dwek (1986). One starts from a stochastic
distribution g(0) = δT0,Ti in which grains with all sizes are at the minimum
temperature T0. Then a distribution g(1) is derived by applying the tran-
sition matrix to g(0). In other words, this is equivalent to compute the
distribution of the grains after one single collision:
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g(1) = g(0)ATi,Td
= δT0,Ti ATi,Td

(6.22)

The process is repeated by applying A to the result of the previous
iteration, until convergence is achieved:

g(k) = A g(k−1) → G(a, Td) for k →∞ (6.23)

The main computational problem consists mainly in computing the tran-
sition matrix A. This requires solving the integral 6.18 for all the combina-
tions of Ti and Tf , ranging from the minimum temperature T0 to the dust
sublimation temperature Tsubl, and for each grain size a. Since the problem
scales as N2

T , it is necessary to limit the size of the temperature grid, in
order to maintain the required computation time at a reasonable level. We
used a logarithmic grid for a and Td, with Na = 11 and NTd

= 256.Once
the transition matrix is evaluated, one can perform as many iterations as
necessary, since the time required for that scales linearly.

The iterations are done only when necessary, i.e. when the collisional
time is shorter than the cooling time (the grain does interact with the gas
more than once in its lifetime). In the other cases, which are typical of
very small grains (with negligible cross sections) only the first iteration is
required. For larger grains, a heuristic criteria to determine the number of
required iteration is given by:

nit . τcool(Teq)
τcoll

(6.24)

The iterations may be stopped before reaching nit, in case the difference
between two successive distribution is less than the allowed precision.

The integrand over x in equation 6.18, should be set to zero when the
final temperature Tf is high enough to destroy the grain (TF & Tsubl, see
figure 6.6). In this case the grain is removed from the population, and
should not contribute to the final statistical distribution. The values of
x for which this happens depend on the respective values of the critical
energy E∗ with the sublimation energy kTsubl. To ensure high precision in
the integration, without increasing the computation time, the integration is
done on an adaptive grid Nx = 512 only where the integrand is not zero,
and the zero points are computed with a semi-analytic formula.

Since the transition matrix for each set of parameters is evaluated inde-
pendently, the problem is easily parallelizable, and ideally scales with the
number of CPUs that are employed. We have thus written a parallel ver-
sion of the program, running either using the parallel library MPI (Message
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Fig. 6.6.— Final grain temperature as a function of incident electron energy. For x =
E∗/kTe & Tsubl the grain is destroyed, and its contribution to the statistical equilibrium
of temperatures should be removed.

Passing Interface, Gropp et al. 1999) or PVM (Parallel Virtual Machine,
Geist et al. 1994). The code is able to compute a full grid of 15 Te,ne pairs
(e.g. the status of the the ICM gas in 15 radial annuli from the center of a
cluster) in about 6 hours, with the SISSA SP2 cluster using 15 nodes.

6.2.4 Modeling results

As a benchmark test for the numerical code, we have computed the stochas-
tic temperature distributions for silicate and graphite dust in the case of
the Coma cluster. The radial size-density distribution was evaluated by us-
ing equation 6.11, and the ICM gas temperature and density profiles with
equations 6.4 and 6.3. The X-ray background flux was estimated by using
equation 6.2. The distributions G(a, Td) have been computed on a logarith-
mic radial grid of 15 points, from the center of the cluster, to 5 Mpc.

The equilibrium temperatures of the grains are given in table 6.1, for
different distances from the center of the cluster, and for different grain-sizes.
Note that Teq is largely independent from a, as found by Dwek (1987).

A selection of the dust stochastic temperature distributions is shown in
figure 6.7 for silicates, and 6.8 for graphite.
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Table 6.1 Dust equilibrium temperature for Coma cluster.

Radius Teq [K] silicate dust Teq [K] graphite dust
(Mpc) 0.001 µm 0.01 µm 0.01 µm 0.001 µm 0.01 µm 0.01 µm

0.00 29.3 30.2 30.2 30.6 30.7 30.7
0.20 28.0 30.0 30.0 29.4 29.4 29.4
0.26 27.3 28.3 28.3 28.7 28.8 28.8
0.33 26.4 27.4 27.4 27.8 27.8 27.8
0.42 25.3 26.2 26.2 26.7 26.7 26.6
0.54 23.9 24.8 24.8 25.2 25.3 25.2
0.69 22.3 23.3 23.1 23.7 23.7 23.5
0.88 20.7 21.6 21.4 22.0 22.0 21.8
1.13 19.0 19.2 19.6 20.3 20.3 19.9
1.45 17.4 18.2 17.7 18.7 18.7 18.1
1.86 15.9 16.7 15.9 17.1 17.1 16.2
2.38 14.5 15.2 14.2 15.6 15.6 14.4
3.05 13.3 13.8 12.5 14.3 14.2 12.7
3.90 12.1 12.5 10.9 13.0 12.8 11.0
5.00 11.0 11.3 9.3 11.8 11.6 9.5

Note the flat shape of the small grain distributions, which are peaked at
a temperature close to T0, but have a long tail reaching high temperatures,
up to Tsubl. This high temperature tail is responsible to a broadening of
the emission spectra, which is important due to the dominance of the size
distribution towards small grains.

Large grains, as expected, tend instead to the equilibrium temperature.
The larger the grain radius, and the more the temperature distribution
resembles a δ-function peaked to the equilibrium temperature Teq:

G(a, Td) =
{

δ(Td − T0) for a → 0
δ(Td − Teq) for a →∞ (6.25)

Note also the dependence of the G(a, Td) shape on the dust gas tem-
perature and density: in the more external regions of the cluster, where
the gas is colder and more rarefied, even large dust grains cannot experi-
ence enough collisions to approach the equilibrium temperature, resulting
in broader temperature distributions.
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Fig. 6.7.— Stochastic temperature distribution for silicate grains, computed for various
annuli from the center of the Coma cluster. Each curve corresponds to a particular grain
size, from a ' 0.001 µm (flat distribution) to 0.1 µm (peaked distribution). The ICM
parameters are written on the side of each panel.

As a test we tried to run the same sequence without the X-ray back-
ground flux, finding that the contribution of the X-ray to the temperature
distribution is of the order of 1 K in the minimum temperature T0. This con-
firms that the energy balance of the ICM dust is dominated by the collisions
with the hot gas.
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Fig. 6.8.— Stochastic temperature distribution for graphite grains, computed for
various annuli from the center of the Coma cluster. Each curve corresponds to a particular
grain size, from a ' 0.001 µm (flat distribution) to 0.1 µm (peaked distribution). The
ICM parameters are written on the side of each panel.

6.3 Possible applications

The numerical code here developed is able to compute with excellent accu-
racy and efficiently the stochastic temperature distribution of dust in hot
plasma, subjected by a background radiation field. The most direct appli-
cation of the code is to compute the spectrum and IR - millimetric surface
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brightness of a real cluster, given a map of the temperature and density of
the gas, with arbitrary geometry.

In spherical geometry the intensity of the dust radiation can be calcu-
lated by extending equation 2.31 to the stochastic temperature case. In
optically thin conditions:

Iν(y) =
∫

d`

∫
da πa2 Qν(a) nd(a, `) 〈Bν(Td)〉 (6.26)

where the Planck emissivity is substituted with its average on the statistical
distribution G(a, Td):

〈Bν(Td)〉 =
∫ ∞

0
G(a, Td) Bν(Td) dTd (6.27)

Note that in equation 6.26 Qν(a) ∼ a, nd(a, `) ∼ a1−k for steady state
dust injection from the galaxies, and nd(a, `) ∼ a−k for unique episode of
sudden injection. In the two cases the emissivity is:

Iν ∝
{

a4−k ∼ a1/2 for steady state dust injection
a3−k ∼ a−1/2 for sudden injection

(6.28)

This result shows that from the IR - millimetric spectra of ICM dust it
is possible to infer the origin of the dust, and test the interactions between
the ISM of the cluster’s galaxies, and the ICM. For the Coma cluster the
expected flux is of the order of 10−1 mJy at 10 µm and 103 mJy at 100 µm,
which is above the expected sensitivity of the SIRTF photometers.

Another interesting application is to test the effect which dust emission
has on the Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zel’dovich, 1972).
The SZ effect is a consequence of Compton scattering of CMBR photons by
the hot ICM gas, which results in a characteristic spectral signature. As
a consequence of the comptonization of the CMBR, the cluster becomes a
“positive” radiation source in the sub-millimeter band, and a “negative” one
at larger wavelengths.

This effect is of cosmological interest because it serves as a probe of intra-
cluster gas and its evolution and, when combined with X-ray observations,
can be used to estimate the Hubble constant, independent of the distance
ladder (Birkinshaw & Hughes, 1994). The SZ effect has been measured in
numerous clusters of galaxies, and in particular in the Coma cluster (Herbig
et al., 1995; Silverberg et al., 1997).

The measurement of the SZ effect at radio frequencies is complicated
by the presence of weak background sources, which may lead to significant
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systematic errors of either sign. At millimetric wavelengths, high quality
ground-based measurements have been obtained using different techniques
with an array of detectors (Wilbanks et al., 1994), or with balloon-borne
instruments (Cheng et al., 1994). Given the temperature distribution of ICM
dust a certain contribution to the effect from the dust should be expected
at millimetric wavelengths.

This contribution can be evaluated as follows. The comptonization pa-
rameter of the radiation along the line of sight is a function of the gas density
and temperature:

y =
(

kσT

mc2

) ∫
ne Te d` (6.29)

The difference in the CMBR intensity at a frequency ν, along different
line of sight `, then is (Rephaeli, 1995):

∆I =
2 (kTCMBR)3

(hc)2
g(x)∆y (6.30)

where x = hν/kTCMBR and

g(x) =
x4ex

(ex − 1)2
[
x coth

(x

2

)
− 4

]
(6.31)

By using the equations 6.3 and 6.4 it is is possible to compute ∆I,
and then compare its spectrum with the spectrum of the expected dust
emissions for different dust to gas mass ratios. Alternatively, the millimetric
measurements of the SZ effect can be used to derive an estimate (or an upper
limit) of the dust density in the cluster, providing an independent test for
the survival of dust in the ICM.


