next up previous
Next: References Up: No Title Previous: No Title

Appendix

  What is a solid angle of 1 square degree ($1\Box^\circ$)? This is this the solid angle encompassed by taking 1 degree in one direction by 1 degree in the perpendicular direction. In other words,  
 \begin{displaymath}
 1\Box^\circ= \int d\Omega = \int_0^{1^{\circ}} \int_0^{1^{\circ}} d\theta d\phi.\end{displaymath} (22)

If you simply integrate over the solid angle

\begin{displaymath}
\int d\Omega = \int_0^{1^{\circ}} \int_0^{1^{\circ}} 
 \sin\theta\,d\theta d\phi \end{displaymath}

you will get the wrong answer. This solid angle is shown in Fig. 6.


  
Figure 6:                         Figure 7:  
\begin{figure}
\begin{minipage}[b]
{2.5in}

\epsfig {file=solidangle.eps}
\end{m...
 ...\begin{minipage}[b]
{3.5in}

\epsfig {file=sqdeg.eps}
\end{minipage}\end{figure}

The correct limits to use are

\begin{displaymath}
\int d\Omega = \int_0^{1^{\circ}} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}+1^{\circ}}
 \sin\theta\,d\theta d\phi \end{displaymath}

which is shown in Fig. 7. Converting degrees to radians, \(1^{\circ}= \pi/180 = 0.0175\) radians. Now \(\sin(\frac\pi2+\frac\pi{180}) \approx \sin\frac\pi2 = 1\).So, we can rewrite the solid angle as

\begin{displaymath}
\int d\Omega = \int_0^{1^{\circ}}\int_{\frac{\pi}{2}}^{\frac{\pi}{2}+1^{\circ}}\,d\theta d\phi. \end{displaymath}

Shifting the limits on $\theta$ by $\pi/2$, we see that this is the same as Equation (28).



Hannah Jang-Condell
10/31/2000